• 제목/요약/키워드: Composite C-spar

검색결과 6건 처리시간 0.018초

AFP로 제작된 두꺼운 복합재료 스파의 제작 및 구조 해석 (Manufacturing and Structural Analysis of Thick Composite Spar Using AFP Machine)

  • 김지현;한준수;배병환;최진호;권진회
    • Composites Research
    • /
    • 제28권4호
    • /
    • pp.212-218
    • /
    • 2015
  • 본 연구에서는 AFP 장비를 이용하여 대형 복합재 스파 구조를 제작하고, 스파 구조에서 가장 취약한 부분인 코너부(Corner radius)에 대한 굽힘강도 시험과 해석을 수행하였다. 국내에서 AFP를 이용한 제품 제작기술이 보편화되지 않은 초기단계임을 고려하여, 복합재 스파 제작을 위한 맨드릴 설계 및 해석에서 구조 검증시험에 이르기까지의 전 과정을 요약, 정리하였다. 맨드릴 설계에서는 자중과 장비 하중에 의한 처짐, 응력, 열변형, 고유진동수 등을 고려하였다. 대상 시제품은 대형 C-스파이고 AFP로 제작한 후 오토클레이브에서 성형하였다. 제품의 성능 확인을 위해 스파 코너부에서 시편을 채취하여 4점 굽힘시험과 비선형 강도해석을 수행하여 제작된 구조물이 이론적 구조강도에 근접하는 강도를 보이는지 점검하였다. 연구결과, 제안된 공정을 사용하여 제작한 대형 C-스파의 코너부는 최초층 파손이론을 사용한 이론적 강도대비 20% 이내의 차이를 보이는 것을 확인하였고, 향후 양산용 대형 복합재 구조물 제작에 적용될 수 있는 가능성을 확인하였다.

F-5E/F 15% SPAR KIT 용 폴리우레탄 캐스팅 윙 페어링 소재 및 공정개발 (A Study on materials and manufacturing process of polyurethan fairing parts for F-5E/F 15% spar kit)

  • 김국진;문영진;한중원;김영생;곽준영;최재성
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.193-197
    • /
    • 2002
  • Polyurethane casting wing fairings included in F-5E/F 15% spar kit are to be installed on aircraft wing surfaces and used for compensating the changes of the aerodynamic configuration by the leading edge extension fairings. These fairing are mandatory items in repairing wing areas and was imported from foreign supplier with long term delivery and high cost. Accordingly, local manufacturing is necessary to get rid of above disadvantages such as long term delivery and high cost. Basic properties test of specimen to be developed and part's requirements after localization was taken and its values were similar or higher when comparing with the original's even in low temp test at -55C. Casting mold process was used to manufacture the polyurethane fairings and its demensional stability & physical condition was proper and met to the related specification and drawing's requirements

  • PDF

다양한 적층각에 대한 상자형 복합재료 날개의 플러터 특성연구 (A Study of Flutter Analysis for the Composite Box Wings with Various Laminates)

  • 정용현;권혁준;김동현;이인;김천곤
    • Composites Research
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 2002
  • 본 연구에서는 실제 구조형상의 사각형 상자형 날개와 전투기 날개에 대하여 구조재를 표피(skin)부분은 복합재료로 대체하고, 나머지 스파(spar)와 리브(rib)는 알루미늄으로 하여 플러터 해석을 수행하였다. MS/PATRAN을 이용하여 실제 날개 구조에 근사한 3차인 유한 요소 모델이 구축되었고, MSC/NASTRAN을 이용하여 고유진동 해석이 수행되었다. 유한 요소는 멤브레인(membrane)요소, 1차원 막대(rod)요소, 전단패널(shear panel)요소를 사용하였다. 복합재료의 적층은 실제적인 적층각을 이용하여 다양하게 변화시켜 해석하였다. 아음속 영역에서 비정상 공력 해석을 위하여 주파수 영역에서의 선형 공기력 이론인 DLM코드가 적용되었고, 주파수 영역 공탄성 지배방정식의 해법으로 V-g방법 및 p-k방법이 적응되었다.

유전자 알고리즘 PSGA를 이용한 복합재료 헬리콥터 블레이드 최적 구조설계 (Optimal Structural Design of Composite Helicopter Blades using a Genetic Algorithm-based Optimizer PSGA)

  • 장세훈;정성남
    • Composites Research
    • /
    • 제35권5호
    • /
    • pp.340-346
    • /
    • 2022
  • 본 연구에서는 복합재료 블레이드에 대한 최적 구조설계 프레임워크를 구성하고, 이를 헬리콥터 블레이드에 적용하여 최적 구조설계를 수행하였다. 단면 형상의 경우 C형 및 D형 스파를 선택할 수 있게 구성하였으며, 최적설계 프레임워크는 유전자 알고리즘과 입자 군집 최적화 알고리즘을 결합한 PSGA를 활용하였다. 단면의 기하학적 모델링은 B-spline을 이용하여 구현하였고, 유한요소 모델 생성 프로그램 Gmsh를 통해 단면 유한요소모델을 만든 뒤 단면 해석 프로그램인 Ksec2D를 사용하여 구조해석 결과를 도출하였다. 본 최적설계 프레임워크를 HART II 블레이드에 적용하여 최적 구조설계를 수행한 결과, C형 스파 모델은 기준 형상 대비 무게 7.39%, D형 스파 모델은 6.65% 감소하였으며, 이때 전단중심은 모두 공력중심과 인접한(5% 이내) 결과를 도출하였다. 본 연구를 통해 일반적인 헬리콥터 블레이드의 단면에 적용할 수 있는 최적 구조설계 프레임워크의 유효성을 확인하였다.

심층신경망을 이용한 복합재 로터 블레이드의 진동특성 예측 (Prediction of Vibration Characteristics of a Composite Rotor Blade via Deep Neural Networks)

  • 유승호;정인호;김혜진;조해성;김태주;기영중
    • 한국항공우주학회지
    • /
    • 제50권5호
    • /
    • pp.317-323
    • /
    • 2022
  • 본 논문에서는 c-스파 단면을 갖는 복합재 로터 블레이드에 대해 co-rotational(CR) 이론 기반 비선형 쉘 요소를 사용하는 In-house code를 통해 고유진동수를 구하고, 이를 이용하여 블레이드의 진동특성을 예측하는 심층신경망 모델을 개발하였다. 심층신경망 모델은 무작위 두께 분포를 갖는 데이터와 스팬 방향으로 두께 감소 경향성을 보이는 데이터를 통해 심층신경망 모델의 정확성을 평가하였다.

750kW급 풍력발전기용 복합재 블레이드의 구조설계 (Structural Design of a 750kW Composite Wind Turbine Blade)

  • 정창규;박선호;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.18-21
    • /
    • 2004
  • A GFRP based composite blade was developed for a 750kW wind energy conversion system of type class I. The blade sectional geometry was designed to have a general shell-spar structure. The load cases specified in the IEC61400-1 international specification were considered. For withstanding all relevant extreme loads, the structural analysis for the complete blade was performed using a commercial FEM code. The static load carrying capacity, buckling stability, blade tip deflection and natural frequencies at various rotational speeds were evaluated to satisfy the strength requirements in accordance with the IEC61400-1 and GL Regulations. For designing a lightweight blade, the thickness and the lay-up pattern of the skin-foam sandwich structures were optimized iteratively using the DOT program T-bolts were used for joining the blade root and the hub, which were modeled using a 3D FE volume model. In order to confirm the safety of the root connection, the static stresses of the thick root laminate and the steel. bolts were predicted by taking account of the bolt pretension and the root bending moments. The calculated stresses were compared with the material strengths.

  • PDF