• Title/Summary/Keyword: Composite Antenna

Search Result 91, Processing Time 0.018 seconds

Design and Analysis of Composite Surface-Antenna-Structure for the Satellite Communication (위성통신을 위한 복합재료 표면안테나 구조의 설계 및 해석)

  • 유치상;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.1-4
    • /
    • 2002
  • The present study aims to design a multiplayer microstrip antenna with composite sandwich construction and to estimate structural behavior of this multiplayer structure for the next generation of structural surface technology. This is termed Surface-Antenna-Structure indicating that structural surface becomes antenna. Constituent materials were selected considering electrical properties as well as mechanical properties. For the antenna performance, antenna elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was $16\times16$ array antenna. From electrical measurements it was shown that antenna performances were in good agreement with design requirements. Structural analysis showed this antenna structure was well designed for the mechanical rigidity. All constituent materials were characterized independently. The SAS concept is the first serious attempt at integration for both antenna and composite engineers and promises innovative future communication technology.

  • PDF

Design of Composite Multilayer Surface Antenna Structure and Its Bending Fatigue Characteristics

  • Moon, Tae-Chul;Hwang, Woon-Bong
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.215-224
    • /
    • 2008
  • The present study aims to design a multilayer microstrip antenna with composite sandwich construction and investigate fatigue behavior of this multilayer SAS (surface antenna structure) that was asymmetric sandwich structure for the next generation of structural surface technology. This term, SAS, indicates that the structural surface becomes an antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, antenna elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.2 GHz. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of the SAS was obtained. The experimental results of bending fatigue were compared with single load level fatigue life prediction equations and in good agreement. The SAS concept is can be extended to give a useful guide for manufacturers of structural body panels as well as antenna designers.

Thermal Analysis of Composite Satellite Antenna Structure in Space Environment (복합재 통신위성 안테나의 우주환경 열해석)

  • ;;;;Frank Gilles
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.77-80
    • /
    • 2002
  • Thermal analysis has been performed to evaluate the thermal effect on composite antenna (Ka-band) structure in space environment. The concepts of thermal control are also presented to maintain the antenna components within respective temperature limits. A steady-state algorithm of I-DEAS' thermal analysis software was utilized to predict both maximum and minimum temperature, maximum gradient temperature, and temperature distribution on each antenna component.

  • PDF

Antenna Integration with Composite Sandwich Structure using Transmission/Reflection Methods of Incident Wave (신호의 투과/반사법을 이용한 복합재료 샌드위치 구조 속으로의 안테나 삽입)

  • You, C.S.;Hwang, W.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.55-58
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effects of composites facesheet on antenna performances are investigated in the first stage and changes in the gain of microstrip antenna due to composites facesheet have been determined. ‘Open condition’ is defined when gain is maximized and is a significant new concept for the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with the outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved and the bandwidth is also as wide as specified in our requirements. With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF

Design and Impact Testing of Cylindrical Composite-Antenna-Structures having High Mechanical Performanc (기계적 특성이 우수한 원통형 복합재료 안테나의 설계 및 충격 실험)

  • Kim, Dong-Seop;Jo, Sang-Hyeon;Hwang, Un-Bong;Lee, Jung-Hui
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.35-38
    • /
    • 2005
  • The Objective of this work was to design Composite Antenna Structures (CAS) and investigate impact behavior of CAS which was various curvature. This term, CAS, indicates that structural surface becomes antenna. Constituent materials were selected considering electrical properties, dielectric constants and tangent loss as well as mechanical properties. For the antenna performance, microstrip antenna layers inserted into structural layers were designed for satellite communication at the resonant frequency of 12.5 GHz and final demonstration article was. After making five kinds of curved CAS, which radii of curvature are flat, 200, 150, 100, 50 mm. The antenna performance changed in accordance with variation of curvature. The Reflection coefficient was independent of curvature but the gain decreased with the radius of curvature. The impact test equipment was Dyna-8250 drop weight tester. The impact characteristic in accordance with curvature is maximum absorb energy is same each other. The impact energy was 8.5 J. For various Impact energy test, five energy levels 3 J, 5 J, 7 J, 10 J, 20 J were used. The performance of impact damaged antenna was estimated by measuring the return loss and the radiation pattern. It was revealed that the performance of antenna was not related to the impact damage. Because the impactor did not damage the patch directly. CAS have good impact stability for the antenna performance.

  • PDF

Design of Microstrip Antenna with Composite Laminates and its structural rigidity (복합재료 평면 안테나 구조의 제작 및 기계적 특성 평가)

  • 전지훈;유치상;김차겸;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.195-198
    • /
    • 2002
  • Two types of conformal load-bearing antenna structure (CLAS) were designed with microwave composite laminates and Nomex honeycomb cores, to give both structural rigidity and good electrical performance. One is 4$\times$8 array for Synthetic Aperture Radar(SAR) system and the other is $5\times2$ array for wireless LAN system. Design was based on wide bandwidth, high polarization purity, low loss and good structural rigidity. We studied the design, fabrication and structural/electrical performances of the antenna structures. The flexural behavior was observed under a 3-point bending test, an impact test, and a buckling test. Electrical measurements were in good agreement with simulation results and these complex antenna structures have good flexural characteristics. The design of this antenna structure is extended to give a useful guide for sandwich panel manufacturers as well as antenna designers.

  • PDF

Microstrip Antenna for SAR Applications with Microwave Composite Laminates and Honeycomb Cores (복합재료 하니콤 샌드위치 판넬을 이용한 SAR 시스템용 마이크로스트립 안테나 개발)

  • 유치상;이라미;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.195-198
    • /
    • 2000
  • Microstrip antenna for SAR applications is designed with microwave composite laminates and Nomex honeycomb cores, which becomes an aircraft's structural panel. This study demonstrated fabrication, design procedures and structural and electrical performances of complex antenna system presented. For validating structural rigidity, 3-point bending test is performed, and simulation results for the complex antenna array are compared with measurements for its electrical performance. The results show that this antenna system can be applied in dual polarized synthetic aperture radar and has a good flexural stiffness with comparison of previous sandwich constructions.

  • PDF

Bending Fatigue Characteristics of Surface-Antenna-Structure (복합재료 표면안테나 구조의 굽힘 피로특성 연구)

  • 김동현;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.108-111
    • /
    • 2003
  • The Objective of this work was to design Surface Antenna Structure (SAS) and investigate fatigue behavior of SAS that was asymmetric sandwich structure. This term, SAS, indicates that structural surface becomes antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, SSFIP elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was $16\;{\times}\;8$ array antenna. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of SAS was obtained. The fatigue load was determined experimentally at a 0.75(1.875kN) load level. SAS concept is the first serious attempt at integration for both antenna and composite engineers and promises innovative future communication technology.

  • PDF

High-Gain and Wideband Microstrip Antenna Using Glass/Epoxy Composite and Nomex Honeycomb (유리섬유/에폭시 복합재료와 허니컴을 이용한 고성능의 마이크로스트립 안테나 설계)

  • You C.S.;Hwang W.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.1-4
    • /
    • 2004
  • In this paper we developed Composite-Smart-Structures(CSS) using sandwich structure composed of Glass/Epoxy laminates and Nomex honeycomb and microstrip antenna. Transmission/reflection theory shows that antenna performances can be improved due to multiple reflection by Glass/Epoxy facesheet, and honeycomb is used for air gap between antenna and facesheet. Stacked radiating patches are used for the wideband. Facesheet and honeycomb thicknesses are selected considering both wideband and high gain. Measured electrical performances show that CSS has wide bandwidth over $10\%$ and higher gain by 3.5dBi than initially designed antenna, and no doubt it has excellent mechanical performances by sandwich effect given by composite laminates and honeycomb core. The CSS concept can be extended to give a useful guide for manufacturers of structural body panels as well as antenna designers, promising innovative future communication technology.

  • PDF

Flexible Antenna Radiator Fabricated Using the CNT/PVDF Composite Film (CNT/PVDF 복합막을 이용한 유연소자용 안테나 방사체)

  • Kim, YongJin;Lim, Young Taek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.196-200
    • /
    • 2015
  • In this paper, we fabricated flexible antenna radiator using the CNT/PVDF (carbon nanotube / polyvinylidene fluoride) composite film. We used polymer film as a matrix material for the flexible devices, and introduced CNTs for adding conductivity into the film resulting in obtaining performances of the antenna radiator. Spray coating method was used to form the CNT/PVDF composite radiator, and pattern formation of the radiator was done by shadow mask during the spray coating process. We investigated the electrical properties of the CNT/PVDF composite films with the CNT concentration, and also estimated the radiator performance. Finally we discuss the feasibility of the CNT/PVDF composite radiator for the flexible antenna.