• Title/Summary/Keyword: Component Vibration Test

Search Result 168, Processing Time 0.028 seconds

Tool Holder Design for Measurement of Cutting Force in Diamond Turning Process (다이아몬드 터닝 가공의 미세절삭력 측정을 위한 Tool Holder 설계)

  • 정상화;김상석;도철진;홍권희;김건희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.68-71
    • /
    • 2000
  • A tool holder system has been designed to measure cutting forces in diamond turning. This system includes a 3-component piezo-electric tranducer. In this research, tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. In addition, tool holder system is verified by vibration test using accelerometer. This system will aid to the development of Fast Tool Servo.

  • PDF

A study on Displacement-Load Calibration of Multi-Axis Simulator (다축 시뮬레이터의 변위-하중 보정에 관한 연구)

  • 정상화;류신호;신현성;김상석;박용래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.591-594
    • /
    • 2000
  • In the recent day, fatigue life prediction techniques play a major role in the design of components in the ground vehicle industry. Full scale durability testing in the laboratory is an essential of any fatigue life evaluation of components or structure of the automotive vehicle. Component testing is particulary important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, 3-axis durability testing device is used to carry out the fatigue test. In this paper, The operation software for simultaneously driving 3-axis vibration testing device is developed and the displacement of the 3-axis actuator is separately calibrated by LDT Moreover, the input and output data are displayed in windows of PC controller with real time.

  • PDF

Factor Analysis on Ajective Pairs for Compatibility Evaluation of Frequency Mixed Information Sounds (주파수혼합 정보음의 적합성평가를 위한 형용사 쌍의 요인분석)

  • Kim Wuon-shik;Kim Kyo-Heon;Jho Moon-Jae
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.325-328
    • /
    • 2001
  • 본 연구는 가전제품의 정보음을 평가할 수 있는 어휘 척도의 개발을 목적으로 행해졌다. 21명의 주부를 대상으로 8개의 주파수혼 정보음을 제시하여 각 정보음에 대해 30개의 형용사 쌍 체크리스트를 이용하여 5점 척도로 평가하게 하였다. 요인분석은 SPSS S/W를 이용하였고 요인추출 방법은 주성분법(principal component method)으로 하였으며 요인추출 갯수는 scree test와 최종요인구조의 심리적 해석에 기초하여 4개로 결정하였으며 해석의 용이성을 위하여 직교회전방법을 적용하였다. 가전제품의 경고음그룹 4개와 종료음그룹 4개로 구성된 주파수혼합 정보음의 적합성평가에 사용된 30개 형용사 쌍의 요인분석 결과, 4가지 요인구조로 가장 잘 설명할 수 있었으며, 첫 번째 요인은 긴박성 요인, 두 번째 요인은 명료성 요인, 세 번째 요인은 역능 요인, 네 번째 요인은 평가 요인으로 나타났다.

  • PDF

Hydraulic Characteristics of HANARO Fuel Bundles

  • Cho, S.;Chung, H.J.;Chun, S.Y.;Yang, S.K.;Chung, M.K.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.501-506
    • /
    • 1997
  • This paper presents the hydraulic characteristics measured by using LDV(Laser Doppler Velocimetry) in subchannels of a HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops fer each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regard ins the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented.

  • PDF

A Study on the Characteristic of Natural Frequencies of Railway Open Deck Plate Girder Bridges (철도 무도상판형교의 고유진동특성에 대한 연구)

  • 오지택;최진유;김현민
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1041-1046
    • /
    • 2002
  • A railway open deck plate girder bridge without ballast should support relatively heavier vehicle loads compared with its self-weight. For such a reason, actual dynamic response of the bridge is considerably differing with normal prediction because additional masses added from vehicle to a bridge have an effect on the dynamic characteristics of the bridge. These differences affect to the estimation of a natural frequency change that adopted for one of the evaluation technique of strength decrease, and these make trouble to the analysis of a natural frequency from the field test data that measured at the bridge subjected to a running vehicle. In this study, classification of mass participation ratio for each component of open deck plate girder bridge without ballast and the comparison according to the change of vibration characteristics for the case of subjected to a running vehicle were accomplished.

  • PDF

A Study on Reliability Compliance Test based on Thermal Fatigue Accelerated Test for CVVL BLDC Motor (CVVL BLDC 모터의 열피로 가속시험을 통한 수명보증시험 설계)

  • Lee, San-Hoon;Park, Sang-Wook;Kim, Min-Geiun;Seon, Han-Geol;Hong, Sung Ryeul;Han, Man-Seung
    • Journal of Applied Reliability
    • /
    • v.15 no.4
    • /
    • pp.241-247
    • /
    • 2015
  • Purpose : The demand for higher fuel economy vehicles has helped develop fuel-efficient vehicles such as a CVVL called continuous variable valve lift. Existing CVVL has been applying DC type motor to control intake valve, but recently some car parts manufacturers have been developing a BLDC type CVVL motor for improvements of endurance performance. The purpose of this study is to find the potential failure mechanism of the CVVL BLDC moto in early stage of development based on the design properties and design the accelerated life test model. Methods : CVVL BLDC is consist of brushs, coil, magnetic, PCB, bearing and so on. Each component has a latent failure mechanism caused by temperature, humidity, vibration. By analysis result of the failure mechanism, thermal fatigue is the most important factor of a durability of CVVL BLDC motor. So, we designed a new accelerated life test model for guarantee of the CVVL BLDC motor. Results : A crack occurred on via hole in test using the conditions we designed, so we did change the design to avoid this failure. The via hole dimension is changed a little larger, as a result we achieve improvements in reliability of the CVVL BLDC motor. By applying various kinds and extreme level of stresses, we can find the operating limits of products. Conclusion : In thesis, We analyzed the failure mechanism of CVVL BLDC and designed an accelerated life test method to give a guarantee for reliability. Based on the test results, we could improve the reliability of developments by change of design.

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

Dynamic Characteristic Analysis Procedure of Helicopter-mounted Electronic Equipment (헬기 탑재용 전자장비의 동특성 분석 절차)

  • Lee, Jong-Hak;Kwon, Byunghyun;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.759-769
    • /
    • 2013
  • Electronic equipment has been applied to virtually every area associated with commercial, industrial, and military applications. Specifically, electronics have been incorporated into avionics components installed in aircraft. This equipment is exposed to dynamic loads such as vibration, shock, and acceleration. Especially, avionics components installed in a helicopter are subjected to simultaneous sine and random base excitations. These are denoted as sine on random vibrations according to MIL-STD-810F, Method 514.5. In the past, isolators have been applied to avionics components to reduce vibration and shock. However, an isolator applied to an avionics component installed in a helicopter can amplify the vibration magnitude, and damage the chassis, circuit card assembly, and the isolator itself via resonance at low-frequency sinusoidal vibrations. The objective of this study is to investigate the dynamic characteristics of an avionics component installed in a helicopter and the structural dynamic modification of its tray plate without an isolator using both a finite element analysis and experiments. The structure is optimized by dynamic loads that are selected by comparing the vibration, shock, and acceleration loads using vibration and shock response spectra. A finite element model(FEM) was constructed using a simplified geometry and valid element types that reflect the dynamic characteristics. The FEM was verified by an experimental modal analysis. Design parameters were extracted and selected to modify the structural dynamics using topology optimization, and design of experiments(DOE). A prototype of a modified model was constructed and its feasibility was evaluated using an FEM and a performance test.

A Study on the Non-Linear Static Analysis for L-type Front Lower Control Arm (L 형 전륜 로어 암의 대하중 강도 해석 기법 연구)

  • Lee, Soon-Wook;Koo, Ja-Suk;Song, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.453-458
    • /
    • 2008
  • Under driving condition, A vehicle experiences various kinds of loads, which brings on the buckling and fracture of suspension systems. Lower control arm (LCA), which consists of 2 bush joints and 1 ball joint connection, is the one of the most important parts in the suspension system. The bush joints absorb the impact load and reduce the vibration from the road. When analyzing the LCA behavior, it is important to understand the material properties and boundary conditions of bushing systems correctly, because of the nonlinearity characteristics of the rubber. In this paper, in order to predict the large scale deformation of the LCA more precisely, three factors are newly suggested, that is, coupling of bush stiffness between translation and rotation, bush extraction force and maximum rotation angle of ball joint. LCA stiffness is estimated by CAE and component test. Analysis and test results are almost same and the validity of considering three factors in LCA analysis is verified.

  • PDF

Earthquake Simulation Tests of a 1 :5 Scale 3-Story Masonry-Infilled Reinforced Concrete Frame

  • Lee, Han-Seon;Woo, Sung-Woo;Heo, Yun-Sup
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.153-164
    • /
    • 1999
  • The objective of this research is to observe the actual response of a low-rise nonseismic moment-resisting masonry-infilled reinforced concrete frame subjected to varied levels of earthquake ground motions. The reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N2IE component earthquake ground motion, whose peak ground acceleration(PGA) was modified to 0.12g, 0.2g, 0.3g, and 0.4g. The g1oba1 behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of the structure were measured. Before and after each earthquake simulation test, free vibration tests and white noise tests were performed to find the changes in the natural period of the model. When the results of the masonry-infilled frame are compared with those of the bare frame, it can be recognized that masonry infills contribute to the large increase in the stiffness and strength of the g1oba1 structure whereas it also accompanies the increase of earthquake inertia forces. However, it is judged that masonry infills may be beneficial to the performance of the structure since the rate of increase in strength appears to be greater than that of the induced earthquake inertia forces.

  • PDF