• Title/Summary/Keyword: Component Variability

Search Result 210, Processing Time 0.029 seconds

Status of corn diversity in the marginal uplands of sarangani province, the Philippines: implications for conservation and sustainable use

  • Aguilar, Catherine Hazel;Espina, Pamela Grace;Zapico, Florence
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.68-68
    • /
    • 2017
  • The status of corn genetic diversity in the uplands of Sarangani in Southern Philippines was investigated using 12 morphological traits subjected to multivariate statistical analyses. Information about traditional farming, post-harvest and storage practices were also elicited especially in relation to losses of traditional varieties, a phenomenon known as genetic erosion. While a handful of farmers still plant traditional corn varieties in the remotest areas, a significant number had already shifted to genetically modified corn. Furthermore, principal component analysis (PCA) reduced the 12 morphological traits into 5 principal components and identified ear length and ear weight to be major contributors to variation. Cluster Analysis, on the other hand, formed two distinct groups but failed to give information about intra-cluster variability among the 32 collected corn accessions. These results warrant that more informative morphological traits and that molecular markers will be used to obtain a better picture of genetic diversity in Sarangani upland corn. Molecular analysis is also needed to establish genetic identities of these cultivars and to detect gene introgression from GM varieties into the gene pool of farmers' corn varieties. These analyses are imperative for the conservation of traditional corn varieties before they disappear in the Sarangani uplands because of shifting priorities of upland farmers.

  • PDF

Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing

  • Ko, Jae-Heung;Kim, Hyun-Tae;Han, Kyung-Hwan
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Secondary walls have recently drawn research interest as a primary source of sugars for liquid biofuel production. Secondary walls are composed of a complex mixture of the structural polymers cellulose, hemicellulose, and lignin. A matrix of hemicellulose and lignin surrounds the cellulose component of the plant's cell wall in order to protect the cell from enzymatic attacks. Such resistance, along with the variability seen in the proportions of the major components of the mixture, presents process design and operating challenges to the bioconversion of lignocellulosic biomass to fuel. Expanding bioenergy production to the commercial scale will require a significant improvement in the growth of feedstock as well as in its quality. Plant biotechnology offers an efficient means to create "targeted" changes in the chemical and physical properties of the resulting biomass through pathway-specific manipulation of metabolisms. The successful use of the genetic engineering approach largely depends on the development of two enabling tools: (1) the discovery of regulatory genes involved in key pathways that determine the quantity and quality of the biomass, and (2) utility promoters that can drive the expression of the introduced genes in a highly controlled manner spatially and/or temporally. In this review, we summarize the current understanding of the transcriptional regulatory network that controls secondary wall biosynthesis and discuss experimental approaches to developing-xylem-specific utility promoters.

Ovarian Cancer: Interplay of Vitamin D Signaling and miRNA Action

  • Attar, Rukset;Gasparri, Maria Luisa;Di Donato, Violante;Yaylim, Ilhan;Halim, Talha Abdul;Zaman, Farrukh;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3359-3362
    • /
    • 2014
  • Increasing attention is being devoted to the mechanisms by which cells receive signals and then translate these into decisions for growth, death, or migration. Recent findings have presented significant breakthroughs in developing a deeper understanding of the activation or repression of target genes and proteins in response to various stimuli and of how they are assembled during signal transduction in cancer cells. Detailed mechanistic insights have unveiled new maps of linear and integrated signal transduction cascades, but the multifaceted nature of the pathways remains unclear. Although new layers of information are being added regarding mechanisms underlying ovarian cancer and how polymorphisms in VDR gene influence its development, the findings of this research must be sequentially collected and re-interpreted. We divide this multi-component review into different segments: how vitamin D modulates molecular network in ovarian cancer cells, how ovarian cancer is controlled by tumor suppressors and oncogenic miRNAs and finally how vitamin D signaling regulates miRNA expression. Intra/inter-population variability is insufficiently studied and a better understanding of genetics of population will be helpful in getting a step closer to personalized medicine.

The Analysis of Changma Structure Using Radiosonde Observational Data from KEOP-2007: Part II. The Dynamic and Thermodynamic Characteristics of Changma in 2007 (KEOP-2007 라디오존데 관측자료를 이용한 장마 특성 분석 : Part Ⅱ. 2007년 장마의 역학적 및 열역학적 특성에 관한 사례연구)

  • Kim, Ki-Hoon;Kim, Yeon-Hee;Jang, Dong-Eon
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.297-307
    • /
    • 2009
  • The synoptic structures and the dynamic and thermodynamic characteristics of Changma in 2007 are investigated using the ECMWF analysis data and the radiosonde data from KEOP-2007 IOP. The enhancement of the North-Pacific High into the Korean peninsula and the retreat of the Okhotsk High are shown during the onset of Changma and the change of wind component from southwesterly to northwesterly is appeared during the end of Changma. The baroclinic atmosphere is dominant during Changma at most regions over the Korean peninsula except at Gosan and Sokcho. The quasi-barotropic atmosphere is induced at Gosan by warm air mass and Sokcho by cold air mass. Precipitation in the Korean peninsula occurs when dynamic instability is strengthened as the baroclinic and qusi-barotropic structure is weakened. An empirical orthogonal function (EOF) analysis is performed to find the dominant modes of variability in Changma. The first EOF explains the onset of Changma. The second EOF is related to the discrimination for existence and nonexistence of precipitation during Changma period according to the alternation of equivalent potential temperature between middle and lower atmosphere.

Development of Snowfall Retrieval Algorithm by Combining Measurements from CloudSat, AQUA and NOAA Satellites for the Korean Peninsula

  • Kim, Young-Seup;Kim, Na-Ri;Park, Kyung-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.277-288
    • /
    • 2011
  • Cloudsat satellite data is sensitive to snowfall and collected during each month beginning with Dec 2007 and ending Feb 2008. In this study, we attempt to develop a snowfall retrieval algorithm using a combination of radiometer and cloud radar data. We trained data from the relation between brightness temperature measurements from NOAA's Advanced Microwave Sounder Unit-B(AMSU-B) and the radar reflectivity of the 2B-GEOPROF product from W-band(94 GHz) cloud radar onboard Cloudsat and applied it to the Korea peninsula. We use a principal components analysis to quantify the variations that are the result of the radiometric signatures of snowfall from those of the surface. Finally, we quantify the correlation between the higher principal component (orthogonal to surface variability) of the microwave radiances and the precipitation-sensitive CloudSat radar reflectivities. This work summarizes the results of applying this approach to observations over the East Sea during Feb. 2008. The retrieved data show reasonable estimation for snowfall rate compared with Cloudsat vertical image.

Morphometric Analysis of Zostera marina L. Found in Various Habitats Along the Eastern Coast of Korea (동해안에 자생하는 거머리말(Zostera marina L.)의 생육지 분포에 따른 형태 분석)

  • 권천중;이상용;최청일
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.1
    • /
    • pp.66-72
    • /
    • 2002
  • The intraspecific variability, habitats, and morphological characteristics of eelgrass (Zostera marina L.) along the eastern coast of Korea were examined during June to August 1998. Morphological characteristics including shoot height, leaf length, leaf width, number of leaf veins, and shape of leaf apex were measured, and eelgrass habitats were analyzed using character correlation, principal components and cluster analyses. The morphological characteristics varied with the habitat types and water depth. Eelgrass beds distributed mostly in lagoons, ports and bays along the east coast of the Korean peninsula. The quantitative morphological features that enabled recognition of the two phonetic groups were short- narrow and long-broad leaf types. Leaf apex in particular varied with the habitat characteristics.

Interpretation of HRV by the Coupled-Oscillating Cardiac Control System (가상 심장박동 발진기를 활용한 심박변이도 해석)

  • Jeung, Gyeo-Wun;Kim, Jeong-Hwan;Lee, Jun-Woo;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.493-498
    • /
    • 2016
  • Heart Rate Variability (HRV) represents beat-to-beat fluctuations of R-R intervals in Electrocardiogram (ECG). On of the clinical applications of HRV is to assess the mental-stress state by evaluating its power spectral density distribution. This study aims at finding new discriminative role of the coupled-oscillating coupling constants, Cs and Cp in the Integral Pulse Frequency Modulation (IPFM) model. Based on comparing with power spectral density of HRV in terms of the relative ratio of the low and high-frequency power component, we can conclude the fact that the coupling parameters Cs and Cp can replace the role of HRV power spectrum interpretation for judging the mental-stress state.

Pulse Counting Sensorless Detection of the Shaft Speed and Position of DC Motor Based Electromechanical Actuators

  • Testa, Antonio;De Caro, Salvatore;Scimone, Tommaso;Letor, Romeo
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.957-966
    • /
    • 2014
  • Some of DC actuators used in home automation, office automation, medical equipment and automotive systems require a position sensor. In low power applications, the introduction of such a transducer remarkably increases the whole system cost, which justifies the development of sensorless position estimation techniques. The well-known AC motor drive sensorless techniques exploiting the fundamental component of the back electromotive force cannot be used on DC motor drives. In addition, the sophisticated approaches based on current or voltage signal injection cannot be used. Therefore, an effective and inexpensive sensorless position estimation technique suitable for DC motors is presented in this paper. This technique exploits the periodic pulses of the armature current caused by commutation. It is based on a simple pulse counting algorithm, suitable for coping with the rather large variability of the pulse frequency and it leads to the realization of a sensorless position control system for low cost, medium performance systems, like those in the field of automotive applications.

Water and Methanol Maser Observations toward NGC 2024 FIR 6 with KVN

  • Choi, Minho;Kang, Miju;Byun, Do-Young;Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.103.2-103.2
    • /
    • 2012
  • NGC 2024 FIR 6 is a star formation site in Orion and may contain a hypercompact H II region, FIR 6c, and a low-mass protostar, FIR 6n. The FIR 6 region was observed in the water maser line at 22 GHz and the methanol class I maser lines at 44, 95, and 133 GHz, using KVN in the single-dish telescope mode. The water maser spectra displayed several velocity components and month-scale time variabilities. Most of the velocity components may be associated with FIR 6n while one component was associated with FIR 4, another young stellar object in the 22 GHz beam. A typical life time of the water-maser velocity-components is about 8 months. The components showed velocity fluctuations with a typical drift rate of about 0.01 km/s/day. The methanol class I masers were detected toward FIR 6. The methanol emission is confined within a narrow range around the systemic velocity of the FIR 6 cloud core. The methanol masers did not show a detectable time-variability. The methanol masers suggest the existence of shocks driven by either the expanding H II region of FIR 6c or the outflow of FIR 6n.

  • PDF

Review of Features and Applications of Watershed-scale Modeling, and Improvement Strategies of it in South-Korea (유역 모델 특성 및 국내 적용 현황과 발전 방향에 대한 검토)

  • Park, Youn Shik;Ryu, Jichul;Kim, Jonggun;Kum, Donghyuk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.592-610
    • /
    • 2020
  • In South Korea, the concept of water environment was expanded to include aquatic ecosystems with the Integrated Water Management implementation. Watershed-scale modeling is typically performed for hydrologic component analysis, however, there is a need to expand to include ecosystem variability such that the modeling corresponds to the social and political issues around the water environment. For this to be viable, the modeling must account for several distinct features in South Korean watersheds. The modeling must provide reasonable estimations for peak flow rate and apply to paddy areas as they represent 11% of land use area and greatly influence groundwater levels during irrigation. These facts indicate that the modeling time intervals should be sub-daily and the hydrologic model must have sufficient power to process surface flow, subsurface flow, and baseflow. Thus, the features required for watershed-scale modeling are suggested in this study by way of review of frequently used hydrologic models including: Agricultural Policy/Environmental eXtender(APEX), Catchment hydrologic cycle analysis tool(CAT), Hydrological Simulation Program-FORTRAN(HSPF), Spatio-Temporal River-basin Ecohydrology Analysis Model(STREAM), and Soil and Water Assessment Tool(SWAT).