• Title/Summary/Keyword: Compliance Device

Search Result 109, Processing Time 0.022 seconds

Study on the Stability of Force Control using a 6-axis Compliance Device with F/T Sensing (F/T측정 기능을 갖는 6축 순응장치를 이용한 힘제어 안정성 연구)

  • Gi-Seong Kim;Sung-Hun Jeong;Han-Sung Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.211-215
    • /
    • 2023
  • In this paper, the stability and effectiveness of the force control with a 6-axis compliance device are verified by performing comparative experiments with a commercial F/T sensor. The position/force control algorithm based on the Cartesian stiffness of a compliance device is briefly introduced and the design result of a 6-axis compliance device with F/T sensing is presented. The comparative experiments show that the force control using a compliance device is much more stable than that with rigid F/T sensor due to the enough compliance of a compliance device larger than robot positional resolution.

A Study on Estimate Vascular Compliance using Acceleration Photoplethymogram (가속도 맥파를 이용한 혈관탄성 추정에 관한 연구)

  • Lee, Chung-Luyl;Kim, Kyung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.840-844
    • /
    • 2013
  • In this study, we try to estimate vascular compliance for management vascular disease. Because It is known the vascular compliance represents the state of the blood vessels. In general, the vascular compliance is estimated using an acceleration photoplethymogram from measured by photoplethymogram-based. The acceleration photoplethymogram is come from second derivative of photoplethymogram. By using the acceleration photoplethymogram, we can estimating vascular compliance, vascular age, vascular state. In this study, for measuring acceleration photoplethymogram we have developed a measurement device having analog filters. It has the advantage of miniaturization, low-power because it is simpler than digital filters. Using the developed device, we have estimated vascular compliance and tested the reliability of our device compare with conventional device having digital filters. As a result.

Kinestatic Control using Six-axis Parallel-type Compliant Device (6축 병렬형 순응기구를 이용한 위치/힘 동시제어)

  • Kim, Han Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.421-427
    • /
    • 2014
  • In this paper, the kinestatic control algorithm using a six-axis compliant device is presented. Unlike the traditional control methods using a force/torque sensor with very limited compliance, this method employs a compliant device to provide sufficient compliance between an industrial robot and a rigid environment. This kinestatic control method is used to simply control the position of an industrial robot with twists of compensation, which can be decomposed into twists of compliance and twists of freedom. A simple design method of a six-axis parallel-type compliant device with a diagonal stiffness matrix is presented. A compliant device prototype and kinestatic control hardware system and programming were developed. The effectiveness of the kinestatic control algorithm was verified through two kinds of kinestatic control experiments.

Design of a 6-axis Compliance Device with F/T Sensing for Position/Force Control (위치/힘 동시제어를 위한 F/T측정 기능을 갖는 6축 순응기구 설계)

  • Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2018
  • In this paper, the design of a novel 6-axis compliance device with force/torque sensing capability and the experiment results on force measurement are presented. Unlike the traditional control methods using a force/torque sensor with very limited compliance, the force control method employs a compliant device to provide sufficient compliance between an industrial robot and a rigid environment for more stable force control. The proposed compliance device is designed to have a diagonal stiffness matrix at the tip and uses strain gauge measurement which is robust to dust and oil. The measurement circuit is designed with low-cost IC chips however the force resolution is 0.04N.

Position/force Control using 6-axis Compliance Device for Chemical Coupler Assembly (케미컬 커플러 체결을 위한 순응장치를 이용한 위치/힘 동시제어)

  • Park, Shi-Baek;Kim, Han-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.909-915
    • /
    • 2022
  • In this paper, a robot automation technology for chemical tank lorry unloading is presented. Handling chemical coupler between tank lorry and ACQC system may be hazardous or toxic to human operators, therefore robot automation is essential. Due to tight tolerance between couplers, even small pose error may result in very large internal force. In order to resolve the problem, compliance between male and female couplers should be introduced with 6-axis compliance device with F/T sensing. The proposed robot automation system consists of a collaborative robot, 6-ax is compliance device with F/T sensing, linear gripper, and robot vision. The position/force control algorithm and experimental results for assembling chemical couplers are presented.

Development of Robotic Tools for Chemical Coupler Assembly

  • Jeong, Sung-Hun;Kim, Gi-Seong;Park, Shi-Baek;Kim, Han-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_1
    • /
    • pp.953-959
    • /
    • 2022
  • In this paper, the design result of robotic tools and the development of robot control system for chemical coupler assembly are presented. This research aims to eliminate the risk of chemicals exposed to human operators by developing the robotic tools and robot automation system for chemical tank lorry unloading that were done manually. Due to tight tolerance between couplers, even small pose error may result in very large internal force. In order to resolve the problem, the 6-axis compliance device is employed, which can provide not only enough compliance between couplers but also F/T sensing. The 6-axis compliance device having large force and moment capacity is designed. A simple linear gripper with rack-and-pinion is designed to grasp two sizes of couplers. The proposed robot automation system consists of 6-DOF collaborative robot with offset wrist, 6-axis compliance device with F/T sensing, linear gripper, and two robot visions.

Kinestatic Control using a Compliant Device by Fuzzy Logic (퍼지 논리에 의한 순응기구의 위치/힘 동시제어)

  • Seo, Jeong-Wook;Choi, Yong-Je
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.917-922
    • /
    • 2004
  • As the tasks of robots become more diverse, some complicated tasks have come to require force and position hybrid control. A compliant device can be used to control force and position simultaneously by separating the twist of the robot's end effector from the twist of compliance and freedom by using stiffness mapping of the compliant device. The development of a fuzzy gain scheduling scheme of control for a robot with a compliant device is described in this paper. Fuzzy rules and reasoning are performed on-line to determine the gain of twists based on wrench error and twist error and twist of compliance and twist of freedom ratio. Simulation results demonstrate that better control performance can be achieved in comparison with constant gain control.

  • PDF

Factors Influencing Compliance on the Use of Personal Protective Equipment during Cleaning of Medical Device Reprocessing Staffs (의료기기 재처리 세척 직원의 개인보호구 착용 이행의 영향요인)

  • Park, Hyun Hee;Hong, Jung Hwa;Jeong, Gye Seon;Lee, Kwang Ok
    • Journal of muscle and joint health
    • /
    • v.31 no.1
    • /
    • pp.42-52
    • /
    • 2024
  • Purpose: This study aimed to identify the factors affecting compliance with personal protective equipment (PPE) use among medical device reprocessing staff. Methods: This descriptive cross-sectional study included 163 cleaning staff members from ten general hospitals in Seoul and Gyeonggi. Data were collected using self-report questionnaires administered between July and September 2023. Analysis included t-tests, ANOVA, Pearson's correlation coefficient, Bonferroni correction, and multiple regression, conducted using SAS ver.9.4. Results: Statistically significant differences in compliance with PPE were found based on department and exposure to contamination within six months (t=-2.82, p=.007). Attitudes toward PPE (r=.22, p=.006) and awareness of the safety climate (r=.22, p=.006) showed a statistically significant positive correlation with PPE compliance. Factors influencing use of personal protective equipment by cleaning staff during medical device reprocessing were department, compliance with PPE, and awareness of the safety climate. The explanatory power of these factors was 58.0%. Conclusion: Improving PPE compliance and creating a safe cleaning environment entails fostering a supportive safety climate. Additionally, regular training that takes into consideration the characteristics of the cleaning staff, alongside continuous monitoring, is required.

Variable Passive Compliance Device for Robotic Assembly (조립 로봇용 가변 수동 강성 장치의 설계)

  • Kim, Hwi Su;Park, Dong Il;Park, Chan Hun;Kim, Byung In;Do, Hyun Min;Choi, Tae Yong;Kim, Doo Hyung;Kyung, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.517-521
    • /
    • 2016
  • General industrial robots are difficult to use for precision assembly because they are operated based on position control. Their position accuracy is also usually higher than the assembly clearance (several tens of ${\mu}m$). In previous researches, force control was suggested as a robotic assembly solution. However, this method is difficult to apply in reality because of speed and cost problems. The RCC provides high speed, but applications are limited because the compliance is fixed, and it cannot detect an assembly condition during a task. A variable passive compliance device (VPCD) was developed herein. The VPCD can detect the assembly condition during tasks. This device can provide proper compliance for successful assembly tasks. The pneumatic system and the Stewart platform with an LVDT sensor were applied for measuring the displacement and variable compliance, respectively. The concept design and analysis were conducted to prove the effectiveness of the developed VPCD.