• Title/Summary/Keyword: Complex vibration response

Search Result 197, Processing Time 0.026 seconds

Measurement and Excitation Techniques for Modal Testing of Rotating Machinery (회전 기계의 모드 시험을 위한 측정 및 가진 방법)

  • 권계시;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.238-243
    • /
    • 1998
  • Measurement technique using only one sensor for complex modal testing of the asymmetric rotor is proposed. The reverse directional frequency response function of asymmetric rotor, which is known to be indicative of the degree of asymmetry in a symmetric rotor, is also shown to be identified with simplest technique requiring only one sensor and one excitor. It lessens the testing efforts and its practicality is verified by numerical simulation. The measurement and excitation techniques for complex modal testing are also summarized so that the efficient complex modal testing can be possible according to the kind of rotor system.

  • PDF

Random vibration analysis of structures by a time-domain explicit formulation method

  • Su, Cheng;Xu, Rui
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.239-260
    • /
    • 2014
  • Non-stationary random vibration of linear structures with uncertain parameters is investigated in this paper. A time-domain explicit formulation method is first presented for dynamic response analysis of deterministic structures subjected to non-stationary random excitations. The method is then employed to predict the random responses of a structure with given values of structural parameters, which are used to fit the conditional expectations of responses with relation to the structural random parameters by the response surface technique. Based on the total expectation theorem, the known conditional expectations are averaged to yield the random responses of stochastic structures as the total expectations. A numerical example involving a frame structure is investigated to illustrate the effectiveness of the present approach by comparison with the power spectrum method and the Monte Carlo simulation method. The proposed method is also applied to non-stationary random seismic analysis of a practical arch bridge with structural uncertainties, indicating the feasibility of the present approach for analysis of complex structures.

A Study on Structural Dynamic Modification of Ship Structure by Using FRF Synthesis Method (전달함수 합성법을 이용한 선박구조변경)

  • Choi, Su-Hyun;Kim, Kuk-Su
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.53-58
    • /
    • 2006
  • When the vibration troubles occur on the ship structure during the sea trial, the rectification work is very restricted because of in-situ limitation. Usually the finite element method is used to improve vibration characteristics of the structure, but it takes lots of time and effort in modeling the structure and adjusting the finite element model in order to consider appropriate boundary conditions of a complex ship structure. Therefore, experimental methods have been in general suggested to obtain proper countermeasures without time-consuming in modeling. In this paper, FRF(frequency response function) synthesis method is applied to estimate natural frequency of the modified ship structure, which is obtained from experimental and numerical methods.

  • PDF

A Study on Nonlinear Rocking Vibration Characteristics of Rigid Block (In the Case of Sliding Occurrence) (강체 블록의 비선형 로킹진동특성에 관한 연구 (미끄럼이 있는 경우))

  • 정만용;김정호;김선규;나기대;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • This paper deals with rocking response behavior of rigid block structure subjected to horizontal excitation. A strict consideration of impact and sliding between the block and base is essential to investigate the rocking vibration characteristics because the rocking behavior were greatly influenced by the impact and sliding motion. Therefore, not only restitution coefficient between the block and base but also the energy dissipation rate which is associated with sliding motion, and the static and kinetic friction coefficient between those should be included in the modeling of rocking system. The analytic program was developed to be able to simulate the experimental responses of the block subjected to horizontal sinusoidal excitations. By using this program, rocking responses were numerically calculated by the nonlinear equations for rocking system. From the response simulation and rocking vibration experiment, the following results were obtained. The rocking responses are affected by the impact motion due to energy dissipation and friction and provide very complex behavior. The toppling condition of the block is also influenced by the impact motion and sliding motion.

  • PDF

Analysis of Vibration and Radiated Noise of Circular Cylindrical Shell in the Air Using Spectral Finite Element Method and Boundary Element Method (스펙트럴유한요소법과 경계요소법을 이용한 셸의 공기 중 진동 및 방사소음 해석)

  • Lee, Yung-Koo;Hong, Suk-Yoon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1192-1201
    • /
    • 2009
  • Analysis of the vibration characteristic for cylindrical shell is more complex than plates since the coupling effects are considered on three dimensions. Based on Love's equation, spectral finite element method(SFEM) is introduced to predict frequency response function of finite circular cylindrical shell in the air with simply supported - free boundary condition without simplifying the equation of motion. And for the radiated noise analysis of cylindrical shell, indirect boundary element method(BEM) is applied using out-of-plane displacements as an input from structural vibration analysis. Comparisons of the structural vibration results by the spectral finite element method and commercial code, NASTRAN(FEM based) are carried out. Likewise, for verification of radiated noise analysis results, commercial code, SYSNOISE(BEM based) are used.

Vibration Characteristics of the Fruit and Vegetables during Transportation (I) - Vibration Charateristics of the Pear by Experimental Analysis - (유통중 청과물의 진동 특성 연구 (I) - 실험적 해석에 의한 배의 진동특성 -)

  • Kim, Man-Soo;Jung, Hyun-Mo;Kim, Ghi-Seok;Park, Chung-Gil
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.2
    • /
    • pp.175-183
    • /
    • 2003
  • Fruit and vegetables are subjected to complex dynamic stresses in the transportation environment. During a long journey from the production area to markets, there is always some degree of vibration present. Vibration inputs are transmitted from the vehicle through the packaging to the fruit. Inside, these cause sustained bouncing of fruits against each other and container wall. These steady state vibration input may cause serious fruit injury, and this damage is particularly severe whenever the fruit inside the package is free to bounce, and is vibrated at its resonance frequency. The determination of the resonance frequencies of the fruit and vegetables may help the packaging designer to determine the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. Instrumentation and technologies are described for determining the vibration response characteristics of the fruits with frequency range 3 to 150 Hz. The computer program for controlling the vibration exciter and the function generator and for measuring the vibration response characteristics of the fruits was developed. The resonance frequency of the pear ranged from 64.5 to 72.2 Hz and the amplitude at resonance was between 1.78 and 2.21 G-rms. The resonance frequency and amplitude at resonance decreased with the increase of the sample mass, and they were slightly affected by mechanical properties such as bioyield deformation and rupture deformation. Regression analysis was performed among the relatively high correlated parameters from the results of correlation coefficient analysis.

  • PDF

Design and Fabrication of Piezoceramic Cantilever Type Vibration Sensors (압전세라믹 외팔보형 진동센서의 설계 및 제작)

  • 정이봉;노용래
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.377-386
    • /
    • 1997
  • A cantilever type piezoceramic vibration sensor was developed that could make up for the short-comings of current vibration sensors, such as high price, low sensitivity, and complex structure. For the design, in conjunction with piezoelectric constitutive equations, we derived full analytic response equations of the piezoelectric bimorph sensor to external forces. The external forces were supposed to take the form of either step or sinusoidal force. Based on the results, actual piezoelectric vibration sensors were fabricated and tested for verification of the theoretical results. Further, comparison of the performance of the developed sensor was made with that of a commercially available representative vibration sensor so that quantitative evaluation of its sensitivity could be made. The sensor developed in this work showed excellent sensitivity and thermal stability in addition to the merits of simple structure and low fabrication cost in comparison with conventional mass-loaded piezoelectric sensors.

  • PDF

Shock response analysis to underwater explosion using Hydrocode (Hydrocode를 이용한 수중폭발 충격응답 해석)

  • Lee, Sang-Gab;Park, Chung-Kyu;Kweon, Jung-Il;Jeong, Sung-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1174-1179
    • /
    • 2000
  • In recent years, the structural shock response to underwater explosion has been studied as much, or more, through numerical simulations than through testing for several reasons. Very high costs and sensitive environmental concerns have kept destructive underwater explosion testing to a minimum. Increase of simulation capabilities and sophisticated simulation tools has made numerical simulations more efficient analysis methods as well as more reliable testing aids. For the simulation of underwater explosions against, surface ships or submerged structures one has to include the effects of the explosive shock wave, the motion of the gaseous reactive products, the local cavitation collapse, the different nonlinear structural properties and the complex fluid-structure interaction phenomena. In this study, as benchmark step for the validation of hydrocode LS/DYNA3D and of technology of fluid-structure interaction problems, two kinds of cavitation problems are analyzed and structural shock response of floating ship model are compared with experimental result.

  • PDF

A Study on Dynamic Response Analysis Algorithm of Plane Lattice Structure (평면격자형 구조물의 동적응답 해석알고리즘에 관한 연구)

  • Moon, D.H.;Kang, H.S.;Choi, M.S.;Kim, Y.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.575-580
    • /
    • 2000
  • Recently it is increased by degrees to construct complex and large lattice structure such as bridge, tower and crane structures. It is very important problem to know dynamic properties of such structures. Authors presented new dynamic response analysis algorithm for rectilinear structure already. This analysis algorithm is combined transfer stiffness coefficient method with Newmark method. Presented method improves the computational accuracy remarkably owing to advantage of the transfer stiffness coefficient method. This paper formulates dynamic response analysis algorithm for plane lattice structure expanding rectilinear structures.

  • PDF

Eigen-Analysis of Engine mount system with Hydraulic Mount (하이드로릭 마운트가 장착된 지지계의 고유치 해석)

  • 고강호;김영호
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.800-805
    • /
    • 2000
  • To determine the modal matrix and modal frequency of engine mount system, we most solve so-called eigen-value problem. However eigen-value problem of engine mount system with hydraulic mount can not be solved by general eigne-analysis algorithm because the properties of hydraulic mount vary with frequency. so in this paper the method for modal analysis of rigid body motions of an engine supported by hydraulic mount is proposed. Natural frequencies and mode shapes of this nonlinear system are obtained by using complex exponential method and Laplace transformation method. In time domain, impulse response functions are calculated by (two-sided) discrete inverse Fourier Transformation of forced frequency response functions achieved by Laplace transformation of the differential equation of motion. Considering the fact that frequency response functions synthesized by modal parameters form proposed method are in good agreement with original FRFs, it is proved that the proposed method is very efficient and useful for the analysis of eigne-value problem of hydraulic engine mount system.

  • PDF