• Title/Summary/Keyword: Complex permittivity

Search Result 145, Processing Time 0.026 seconds

Effect of cobalt ferrite on curing and electromagnetic properties of natural rubber composites

  • Anuchit Hunyek;Chitnarong Sirisathitkul
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • The combination of cobalt ferrite and natural rubber has a potential to enhance the functional properties of rubber ferrite composites available on the market. In this study, cobalt ferrite was synthesized by the sol-gel method with tapioca starch as a cheating agent and then incorporated into natural rubber using an internal mixer. The curing characteristics, magnetic hysteresis, complex permeability, and permittivity of the rubber ferrite composites were studied as a function of the loading from 0 to 25 phr. The cure time and scorch time tended to reduce with the addition of non-reinforced cobalt ferrite fillers. The remanent and saturation magnetizations were linearly proportional to the cobalt ferrite loading, consistent with the rule of mixture. On the other hand, the increase in cobalt ferrite loading from 5 to 25 phr slightly affected the coercive field and the complex permeability. Using the maximum loading of 25 phr, both real and imaginary parts of the permittivity were significantly raised and reduced with the frequency in the 10-300 MHz range.

A Study on the Photon Energy Characteristics of ZnO Thin Film According to Coating Thickness (ZnO 박막의 증착 두께에 따른 Photon Energy 특성에 관한 연구)

  • Lee, Jung-Il;Seo, Jang-Soo;Jung, Sung-Gyo;Kim, Byung-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.75-81
    • /
    • 2003
  • This study evaporates ZnO layer thickness differently with RF sputtering method on Si Wafer(n-100). This study is performed to examine the characteristics of photon energy and dielectric loss according to the thickness of ZnO and increase the reliability and reproduction of ZnO thin film. It is confirmed that the variation of electric Permittivity by frequency is resulted from the formation of particles within thin film, the particle size and the polarization on grain boundary. Peak of electric Permittivity value of thin film has slower and less value in early low wavelength by the coulomb force involved in carrier combination according to the increase of frequency. Reversal of electric Permittivity values is induced by dipole polarization shown in the dielectric of thin film. Complex electric constant $({\varepsilon}_1{\varepsilon}_2)$ has larger peak values as it’s thickness is thinner and then it is larger according to the increase of frequency. Electric Permittivity by photon energy has large value in imaginary number and is reduced exponentially by the increase of carrier density according to that of photon energy.

  • PDF

The Photon Energy Characteristics of ZnO Thin Film Fabricated by RF Sputtering (RF Sputtering으로 제작한 ZnO 박막의 Photon Energy 특성)

  • Kim, Byung-In;Kim, Won-Bae;Chung, Seong-Gyo;Kim, Duck-Tae;Choi, Young-Il;Kim, Hyung-Gon;Song, Chan-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.73-79
    • /
    • 2002
  • This study evaporates ZnO layer thickness' differently with RF sputtering method on Si Wafer(n-100). This study is performed to examine the characteristics of photon energy and dielectric loss according to the thickness of ZnO and increase the reliability and reproduction of ZnO thin film. It is confirmed that the variation of electric Permittivity by frequency is resulted from the formation of particles within thin film, the particle size and the polarization on grain boundary. Peak of electric Permittivity value of thin film has slower and less value in early low wavelength by the coulomb force involved in carrier combination according to the increase of frequency. Reversal of electric Permittivity values is induced by dipole polarization shown in the dielectric of thin film. Complex electric constant $({\varepsilon}_1,{\varepsilon}_2)$ has larger peak values as it's thickness is thinner and then it is larger according to the increase of frequency. Electric Permittivity by photon energy has large value in imaginary number and is reduced exponentially by the increase of carrier density according to that of photon energy.

  • PDF

Numerical Calculation for Impedance of Horizontal Ground Electrode for Information and Communication Facilities with Considering Characteristics of Permittivity in Soil (토양의 유전율 특성을 고려한 정보통신설비용 수평접지전극의 임피던스 계산)

  • Ahn, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.245-251
    • /
    • 2013
  • An impedance of ground electrode for information and communication facilities has a significant relationship with the electrical characteristics of soil where the ground electrode is buried. Especially, the impedance of ground electrode is directly affected by the characteristics of permittivity and conductivity in soil as a function of a frequency of an applied electric field. The program based on the electromagnetic field model was developed in MATLAB. Because both permittivity and conductivity can not be modified in commercial programs. The permittivity of soil was applied with the Debye equation which is a model of dielectric relaxation. And the empirical equation of the conductivity in soil was quoted in other paper. In order to confirm the reliability of proposed program, the impedance measurement of ground electrode was carried out, which were compared with the results of simulation in commercial program. In result, it was confirmed that the impedance and phase different simulated by appling the characteristics of permittivity and conductivity in soil are in good agreement with the measured values than results of NEC.

Open-Ended Coaxial Probe with Protruding Inner Conductor (내심이 돌출된 개방단말 동축선 프로브)

  • Jung Ji-Hyun;Jo Yu-Sun;Kim Se-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.26-32
    • /
    • 2005
  • Open-ended coaxial probe is used to measure complex permittivities of materials in a wide bandwidth. Complex permittivity measured by a conventional coaxial probe suffers from severe fluctuation due to instrumental uncertainty when the difference between reflection coeffcients of reference and measuring materials is small. In this paper, open-ended coaxial probe with protruding inner conductor is suggested to increase the difference between reflection coefficients of reference and measuring materials. Its validity is assured by FDTD simulation and actual measurement.

Electromagnetic Wave Absorption Characteristics of Nanocrystalline FeCuNbSiB Alloy Flakes/Polymer Composite Sheets with Different Flake Thickness

  • Lee, Tae-Gyu;Kim, Ju-Beom;Noh, Tae-Hwan
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.155-160
    • /
    • 2009
  • This study examined the effects of a decrease in thickness of magnetic alloy flakes on the electromagnetic wave absorption characteristics of nanocrystalline $Fe_{73.5}Cu_1Nb_3Si_{15.5}B_7$ (at.%) alloy flakes/polymer composite sheets available for a quasi-microwave band. The thickness of FeCuNbSiB alloy flakes decreased to 1-2 $\mu$m with increasing milling time up to 24 h, and the composite sheet including alloy flakes milled for 24 h exhibited considerably enhanced power loss properties in the GHz range compared to the sheets having non-milled alloy powders. Although a considerable increase in loss factor upon milling was observed in the narrow frequency range of 4-6 GHz, there was no correlation between the complex permeability and flake thickness. However, the complex permittivity increased with increasing milling time, and there was good agreement between the milling time and the frequency dependences of the complex permittivity and power loss.

The Effect of Non-stoichiometry on the Microwave Absobing Properties of Ni-Zn Ferrites. (비화학양론적 조성이 니켈-아연 페라이트의 전파흡수특성에 미치는 영향)

  • 조성백;오재희
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 1995
  • The systematic variation of complex permeability and complex permittivity and their relationship with micro-wave absorbing properties are investigated in sintered Ni-Zn ferrites of non-stoichiometric composition. The specirrens of ${(Ni_{0.5}Zn_{0.5}O)}_{1-x}(Fe_{2}O_{3})_{1+x}$ spinels were prepared by a conventional ceramic processing technique. In the present study. complex permeability and permittivity can be controlled by the variation of ${\alpha}-Fe_{2}O_{3}$ contents in the spinel lattice. The primary effect of the excess ${\alpha}-Fe_{2}O_{3}$ is to increase the dielectric constant. while the notable decrease of magnetic loss is observed in the iron-deficient ferrites. The results suggest that the matching fre-queocyand matching thickness could be controlled by the variation of ${\alpha}-Fe_{2}O_{3}$ contents in the Ni-Zn ferrite.

  • PDF

Variations of Complex Permittivity due to Water Content and Heavy Metal Contamination (함수비와 중금속 오염도에 따른 유전상수의 변화)

  • Oh Myoun-Hak;Kim Yong-Sung;Yoo Dong-Ju;Park Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.231-241
    • /
    • 2005
  • Laboratory experiments were performed to examine the effects of water content and to see if permittivity had sufficient sensitivity to identify subsurface contamination. Both real and imaginary permittivities of unsaturated sand were strongly governed by the volumetric water content. Especially, a linear relationship between real permittivity and volumetric water content was derived at high frequencies (MHz ranges). Heavy metals in pore fluid result in significant increases in the effective imaginary permittivity, due to ionic conduction, but decreases in the real permittivity arises due to the decreased orientational polarization of water molecules caused by hydration of ions. Clear increase in the effective imaginary permittivity with heavy metal concentration was found to be valuable in the application of electrical methods for detecting heavy metals in the subsurface. However, because the permittivity is primarily dependent on the volumetric water content of soil, pre-evaluation on the volumetric water content is required.

Dielectric Properties of Sardine-Starch Paste at Low Moisture Contents 1, Effect of Moisture Content and Frequency (정어리 마쇄육의 저수분에서의 유전특성 1. 수분함량과 주파업에 따른 유전특성)

  • LEE Byeong-Ho;KIM Chang-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.125-132
    • /
    • 1983
  • Dielectric properties of sardine-starch paste with moisture content of 4 to $13\%$ were investigated as functions of moisture and frequency. And the effects of the levels of fat and starch of the mixtures upon dielectric permittivity, critical moisture, were also mentioned. In addition, a theoretical prediction of frequency dependence of dielectric constant which was computed by the lumped circuit of two layer condenser model was evaluated. For the preparation of sardine-starch paste, comminuted sardine meat was washed thoroughly several times in chilled water by soaking and decanting, and finally centrifuged. This procedure was extended longer to provide a low fat sample. The centrifuged meat was mixed with adequate amounts of starch and salt, and ground for 25 minutes in a stone mortar, moulded in the form of disk with 7cm diameter and 1.2cm thickness and then freeze dried. Dried meat disks were cut off for the size of 5.5cm diameter and 1.0cm thickness and their moisture contents were controlled in humidified desiccators with saturated solutions. Dielectric constants of sardine-starch paste tended to decrease frequency was increased showing a critical charge at the moisture called critical moisture content. In case of the sample with $20\%$ starch and $2\%$ salt an average complex permittivity($\epsilon^{\ast}$) at 7 to $8\%$ morsture as the critical moisture content was presented; $\epsilon^{\ast}$=3.37+j 0.39 at 0.1 MHz, $\epsilon^{\ast}$=2.54+j 0.19 at 15 MHz, and $\epsilon^{\ast}$=2.15+j 0.08 at 1.8 GHz, respectively. The theoretically obtained complex permittivity values from the two layer condoner model were in close agreement with these actual measurements under the same conditions, that appeared as $\epsilon^{\ast}$=2.53+i 0.09 at 0.1 MHz and $\epsilon^{\ast}$=2.28+j 0.06 at 15 MHz, respectively. The fast level of the mixture also revealed an influence on dielectric property that defatted neat with $1.0\%$ fat showed a higher hc and $\epsilon^{\ast}$ value than the meat with $4.8\%$ fat. Complex permittivity being related to the moisture level remained nearly unchanged or slightly changed at the moisture range of 4 to $8\%$ but was dispersed widely at higher moisture contents.

  • PDF

Resonance on a Uniaxial Substrate with a Superstrate-Loaded Ractangular Patch antenna (덮게층을 갖는 일축성 매질위의 패치안테나의 공진해석)

  • 장승호;윤중한;이화춘;최병하
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.195-198
    • /
    • 1999
  • Complex resonant frequency of on a uniaxial substrate with a superstrate-loaded microstrip structure is investigate. The study is performed by Galerkin’s method. The numerical convergence using sinusoidal basis function. Numerical results for the effects of anisotropy in the substrate, superstrate permittivity, in the complex resonant frequency of the rectangular microstrip structure are also presented. Half-power bandwidth are increased due to the positive uniaxial an isotropy and superstrate.

  • PDF