• Title/Summary/Keyword: Complex parts

Search Result 914, Processing Time 0.032 seconds

A Study on the Prediction of Weapon System Availability Using Agent Based Modeling and simulation (에이전트 기반 모델링 및 시뮬레이션을 이용한 무기체계 가용도 예측에 관한 연구)

  • Lee, Se-Hoon;Choi, Myoung-Jin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.25-34
    • /
    • 2021
  • Availability is one of the important factor for developing weapon system, because it indicates the mission capability and sustainable life cycle management of weapon system. Recently, as weapon system becomes more advanced and more complex, availability estimation becomes more important to reduce the life cycle cost of weapon system. Modeling and simulation(M&S) is useful method to describe the availability of complex weapon system applying operational environment and maintenance plan. Especially agent based model(ABM) has the strength to describe interactions between agents and environments in complex system. Therefore, this paper presents the availability estimation of weapon system using agent based model. The sample data of part list and reliability analysis is applied to build availability estimation model. User agent and mechanic agent are developed to illustrate the behavior of operation and maintenance using formal specification. Storage reliability is applied to describe failure of each parts. The experimental result shows that this model is quite useful to estimate availability of weapon system. This model may estimate more reasonable availability, if full scale data of weapon system and real field data of operation is provided.

Development Direction, Actual Condition and Location of the Auto Industry in Jeon-Buk Province (전북지역 자동차산업 입지와 지역산업 실태 및 발전방향)

  • 문남철
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.261-281
    • /
    • 2004
  • The location of auto industry in Jeon-buk is due to the strategies for secure a low-priced industrial site of the auto assembly companies, which attained to quantitative growth stage in the early part 1990's, and the regional balanced development policy by the location of leader enterprise of the government. As a consequence of the reversal development pattern that is located the auto parts firm after locating the auto assembly companies, the Jeon-buk auto industry has many structural vulnerability. First, because of the lack development of auto parts industries, the auto assembly companies located in Jeon-buk are dependent many auto parts at a external region. Second, most of auto parts firm belongs to the singular assembly company exclusively. And the majority of auto parts industries are the low value-added products that are necessary a simple labor power. Third, the agglomeration undeveloped of associated industries with automobile caused a low competitiveness of invitation a manufacturing company as against other provinces. For a regional economic development by the auto industry, it is necessary a flexible regional structure of production through an agglomeration of associated industries. The geographical proximity between an assembly company and a parts firms is an important locational factor with the induction of Just-in-Time production system and a modularization in the auto industry. And a modularization applies to more new factory than the existing factories. So that, Jeon-buk self-government has to create an amicable industrial environment, try to attract an auto parts enterprises and plan an agglomerated industrial complex that is able to supply a parts modulated to assembly company.

  • PDF

Spatial Characteristics in the Labor Process of the Footwear Industry in Busan Metropolitan Area (부산 신발산업 노동과정의 공간적 특성)

  • Lee, Chul-Woo;Ju, Mee-Soon
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.2
    • /
    • pp.55-70
    • /
    • 2001
  • This research is to analyze spatial characteristics of labor process at the labor properties in footwear industries in Busan Metropolitan area. The production process of a footwear industry is mainly composed of the development and production of goods and design, the development of component parts and materials and the assembly of parts to be end products, and the marketing. Each process inclines to concentrate in a region having the needed labor; therefore, a manufacturing factory for each process attempts to be located at the different places. The critical core functions such as the development of products and design, the development and production of critical component parts and material, and the marketing are carried out by manufacturing companies with the trademark of the products. These functions intend to be located in the Sasang industrial complex in Busan city and Seoul metropolitan area. The function such as the development and production of major component parts and materials needs high skilled technicians and well trained laborer, and inclines to be located in traditional footwear industrial regions. The assembling process is carried out by skilled females and/or unskilled labors, and attempt to be accompanied with critical core functions or outsourcing. This process has been spatially concentrated in the traditional footwear industrial areas; but recently it extends to the developing countries. The development and production of materials and the production of component parts mainly depending on male labors incline to be located in the developed countries for critical core component parts and materials, and to be located in Busan for major components parts and materials. The production of standardized components parts and materials are carried out in the less developed countries.

  • PDF

ST-Segment Analysis of ECG Using Polynomial Approximation (다항식 근사를 이용한 심전도의 ST-Segment 분석)

  • Jeong, Gu-Young;Yu, Kee-Ho;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.691-697
    • /
    • 2002
  • Myocardial ischemia is a disorder of cardiac function caused by insuficient blood flow to the muscle tissue of the heart. We can diagnose myocardial ischemia by observing the change of ST-segment, but this change is temporary. Our primary purpose is to detect the temporary change of the 57-segment automatically In the signal processing, the wavelet transform decomposes the ECG(electrocardiogram) signal into high and low frequency components using wavelet function. Recomposing the high frequency bands including QRS complex, we can detect QRS complex more easily. Amplitude comparison method is adopted to detect QRS complex. Reducing the effect of noise to the minimum, we grouped ECG by 5 data and compared the amplitude of maximum value. To recognize the ECG .signal pattern, we adopted the polynomial approximation partially and statistical method. The polynomial approximation makes possible to compare some ECG signal with different frequency and sampling period. The ECG signal is divided into small parts based on QRS complex, and then, each part is approximated to the polynomials. After removing the distorted ECG by calculating the difference between the orignal ECG and the approximated ECG for polynomial, we compared the approximated ECG pattern with the database, and we detected and classified abnormality of ECG.

AFP mandrel development for composite aircraft fuselage skin

  • Kumar, Deepak;Ko, Myung-Gyun;Roy, Rene;Kweon, Jin-Hwe;Choi, Jin-Ho;Jeong, Soon-Kwan;Jeon, Jin-Woo;Han, Jun-Su
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.32-43
    • /
    • 2014
  • Automatic fiber placement (AFP) has become a popular processing technique for composites in the aerospace industry, due to its ability to place prepregs or tapes precisely in the exact position when complex parts are being manufactured. This paper presents the design, analysis, and manufacture of an AFP mandrel for composite aircraft fuselage skin fabrication. According to the design requirements, an AFP mandrel was developed and a numerical study was performed through the finite element method. Linear static load analyses were performed considering the mandrel structure self-weight and a 2940 N load from the AFP machine head. Modal analysis was also performed to determine the mandrel's natural frequencies. These analyses confirmed that the proposed mandrel meets the design requirements. A prototype mandrel was then manufactured and used to fabricate a composite fuselage skin. Material load tests were conducted on the AFP fuselage skin curved laminates, equivalent flat AFP, and hand layup laminates. The flat AFP and hand layup laminates showed almost identical strength results in tension and compression. Compared to hand layup, the flat AFP laminate modulus was 5.2% higher in tension and 12.6% lower in compression. The AFP curved laminates had an ultimate compressive strength of 1.6% to 8.7% higher than flat laminates. The FEM simulation predicted strengths were 4% higher in tension and 11% higher in compression than the flat laminate test results.

Development of Gap Searching System for Car Body Assembly by Decomposition Model Representation (분해 모델을 이용한 자동차 차체의 틈새 탐색 시스템 개발)

  • Bae, Won-Jung;Lee, Sung-Hoon;Park, Sung-Bae;Jung, Yoong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.109-118
    • /
    • 2012
  • Large number of part design for aircraft and automobile is preceded by functional or sectional design groups for efficiency. However, interferences and gaps can be found when the parts and sub-assemblies by those design groups are to be assembled. These interferences and gaps cause design changes and additional repair processes. While interference problem has been resolved by digital mockup and concurrent engineering methodology, gap problem has been covered by temporary treatment of filling gap with sealant. This kind of fast fix causes fatal problem of leakage when the gap is too big for filling or the treatment gets old. With this research, we have developed a program to find the gap automatically among parts of assembly so that users can find them to correct their design before manufacturing stage. By using decomposition model representation method, the developed program can search the gap among complex car body parts to be visualized with volumetric information. It can also define the boundary between the gap and exterior empty space automatically. Though we have proved the efficiency of the developed program by applying to automobile assembly, application of the program is not limited to car body only, but also can be extended to aircraft and ship design of large number of parts.

A retrospective computed tomography analysis of maxillary fractures and the clinical outcomes of their unreduced parts

  • Chung, Chan Min;Tak, Seung Wan;Lim, Hyoseob;Cho, Sang Hun;Lee, Jong Wook
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.6
    • /
    • pp.370-375
    • /
    • 2019
  • Background: Some parts of a maxillary fracture-for example, the medial and posterior walls-may remain unreduced because they are unapproachable or hard to deal with. This study aimed to investigate the self-healing process of unreduced maxillary membranous parts of fractures through a longitudinal computed tomography (CT) analysis of cases of unilateral facial bone injuries involving the maxillary sinus walls. Methods: Thirty-two patients who had undergone unilateral facial bone reduction surgery involving the maxillary sinus walls without reduction of the medial and posterior walls were analyzed in this retrospective chart review. Preoperative, immediate postoperative, and 3-month postoperative CT scans were analyzed. The maxillary sinus volume was calculated and improvements in bone continuity and alignment were evaluated. Results: The volume of the traumatized maxillary sinuses increased after surgery, and expanded significantly by 3 months postoperatively (p< 0.05). The significant preoperative volume difference between the normal and traumatized sides (p= 0.024) resolved after surgery (p> 0.05), and this resolution was maintained at 3 months postoperatively (p > 0.05). The unreduced parts of the maxillary bone showed improved alignment and continuity (in 75.0% and 90.6% of cases, respectively), and improvements in bone alignment and bone continuity were found to be correlated using the Pearson chi-square test (p= 0.002). Conclusion: Maxillary wall remodeling through self-healing occurred concomitantly with an increase in sinus volume and simultaneous improvements in bone alignment and continuity. Midfacial surgeons should be aware of the natural course of unreduced fractured medial and posterior maxillary walls in complex maxillary fractures.

A Case Analysis Utilization of Historical Buildings - Focused on Conversion-type Buildings - (역사적 건축물의 활용에 관한 사례분석 - 전용형 사례를 중심으로 -)

  • Park, Jong-Hye;Shin, Kyung-Joo
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.5
    • /
    • pp.51-59
    • /
    • 2013
  • This study aimed to present the possibilities that a variety of conversions can be made in terms of the spatial function through the situation analysis and in-depth case studies, focusing on the cases of the conversion of historic buildings. Literature analysis and case analysis technique were conducted as the research methods. For the literature analysis, the researcher selected 105 cases of conversion-type buildings by recombining and reanalyzing them to space functional changes; the SPSS PC+ 18.0 program was used as the analysis tool to conduct a frequency analysis and cross analysis. In-depth analysis was conducted to investigate the overview of the architecture, building history, spatial functional changes, space program, conservation value, and the conserved parts by selecting 9 cases in Korean and foreign countries that have been recently converted through literature analysis and the results of the study were as follows. 1) As a result of analyzing the changes in function, the highest percentage of the cases was conversion into the cultural function (63.8%). 2) There were cases for conversion into the commercial function, business function, accommodation function and educational function besides cultural function. 3) As a result of spatial program, the attempts to increase the utilization of the building generally by applying the complex space with more than two functions could be seen. 4) The buildings with historical and architectural value were conserved most of the outer wall and some portion of internal parts; the buildings with symbolic value were renovated largely, while preserving symbolic parts; and the buildings with practical value were renovated in a way that maintains the structural parts while changing the interior space to be suitable for their function.

Development of a process to apply uniform pressure to bond CFRP patches to the inner surface of undercut-shaped sheet metal parts (언더컷 형상의 판재 성형품에 보강용 CFRP 패치의 접합을 위한 공정기술 개발)

  • Lee, Hwan-Ju;Jeon, Yong-Jun;Cho, Hoon;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.65-70
    • /
    • 2020
  • Partial reinforcement of sheet metal parts with CFRP patch is a technology that can realize ultra-lightweight body parts while overcoming the high material cost of carbon fiber. Performing these patchworks with highly productive press equipment solves another issue of CFRP: high process costs. The A-pillar is the main body part and has an undercut shape for fastening with other parts such as roof panels and doors. Therefore, it is difficult to bond CFRP patches to the A-pillar with a general press forming tool. In this paper, a flexible system that applies uniform pressure to complex shapes using ceramic particles and silicone rubber is proposed. By benchmarking various A-pillars, a reference model with an undercut shape was designed, and the system was configured to realize a uniform pressure distribution in the model. The ceramic spherical particles failed to realize the uniform distribution of high pressure due to their high hardness and point contact characteristics, which caused damage to the CFRP patch. Compression equipment made of silicone rubber was able to achieve the required pressure level for curing the epoxy. Non-adhesion defects between the metal and the CFRP patch were confirmed in the area where the bending deformation occurred. This defect could be eliminated by optimizing the process conditions suitable for the newly developed flexible system.

Characterization and Mechanical Properties of Stainless Steel 316L Fabricated Using Additive Manufacturing Processes (적층식 제조 공정을 활용한 스테인레스 316L 제작기술의 특징과 기계적 속성)

  • Choi, Cheol;Jung, Mihee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 2021
  • Recently, additive manufacturing (AM) technology such as powder bed fusion (PBF) and directed energy deposition (DED) are actively attempted as consumers' needs for parts with complex shapes and expensive materials. In the present work, the effect of processing parameters on the mechanical properties of 316L stainless steel coupons fabricated by PBF and DED AM technology was investigated. Three major mechanical tests, including tension, impact, and fatigue, were performed on coupons extracted from the standard components at angles of 0, 45, 90 degrees for the build layers, and compared with those of investment casting and commercial wrought products. Austenitic 316L stainless steel additively manufactured have been well known to be generally stronger but highly vulnerable to impact and lack in elongation compared to casting and wrought materials. The process-induced pore density has been proved the most critical factor in determining the mechanical properties of AM-built metal parts. Therefore, it was strongly recommended to reduce those lack of fusion defects as much as possible by carefully control the energy density of the laser. For example, under the high energy density conditions, PBF-built parts showed 46% higher tensile strength but more than 75% lower impact strength than the wrought products. However, by optimizing the energy density of the laser of the metal AM system, it has been confirmed that it is possible to manufacture metal parts that can satisfy both strength and ductility, and thus it is expected to be actively applied in the field of electric power section soon.