• 제목/요약/키워드: Complex formation constant

검색결과 130건 처리시간 0.245초

Determination of the Formation Constants of Metal Complexes with Organic Acids by Adsorption Method (흡착법에 의한 금속이온과 유기산간의 착염 생성계수의 측정법)

  • Jae, Won-Mok
    • Journal of the Korean Chemical Society
    • /
    • 제15권4호
    • /
    • pp.199-203
    • /
    • 1971
  • The adsorption method for the determination of the formation constants of the metal complexes with organic acids was developed by using membrane filters. The adsorption method involved the measurements of radioactivities of the adsorbed metal on membrane filters and the filtrate solution after the radioactive metal ion were filtered through membrane filters in the presence of organic ions of varying concentration. Comparing the adsorption method with the ion exchange method, it was seen that the adsorption method was simpler and faster than the ion exchange method. As an example of the metal complex with organic acid yttrium citrate complex was chosen, and the formation constant of the complex obtained by the adsorption method showed $K_f=2.0{\times}10^{-4}(l. mole^{-1})$ at a pH of 7. Also the present study revealed that the carrierfree state of yttrium in aqueous solution was present in the completely ionized state.

  • PDF

Effect of Pressure and Solvent Dielectric Constant on the Kinetic Constants of Trypsin-Catalyzed Reaction. (Trypsin 반응에 대한 용매의 유전상수 및 압력의 영향)

  • Park, Hyun;Chi, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • 제28권1호
    • /
    • pp.26-32
    • /
    • 2000
  • Electrostatic forces contribute to the high degree of enzyme transition state complementarity in enzyme catalyzed reaction and such forces are modified by the solvent through its dielectric constant and polar properties. The contributions of electrostatic interaction to the formation of ES complex and the stabilization of transition state of the trypsin catalyzed reaction were probed by kinetic studied with high pressure and solvent dielectric constant. A good correlation has been observed between the increase of catalytic efficiency of trypsin and the decrease of solvent dielectric constant. Activation volume linearly decreased as the dielectric constant of solvent decreased, which means the increase in the reaction rae. Moreover, the decrease of activation volume by lowering the solvent dielectric constant implies a solvent penetration of the active with and a reduction of electrostatic energy for the formation of dipole of the active site oxyanion hole. When the 야electric constant of the solvents was lowered to 4.7 unit, the loss of activation energy and that of free energy of activation were 2.262 KJ/mol and 3.169 KJ/mol, respectively. The results of this study indicate that the high pressure kinetics combined with solvent effects can provide unique information on enzyme reaction mechanisms, and the controlling the solvent dielectric constant can stabilize the transition state of the trypsin-catalyzed reaction.

  • PDF

Impedance Spectroscopy of (Pb0.92La0.08)(Zr0.95Ti0.05)O3 Ceramics above Room Temperatures

  • Jong-Ho Park
    • Korean Journal of Materials Research
    • /
    • 제34권5호
    • /
    • pp.242-246
    • /
    • 2024
  • La modified lead zirconate titanate ceramics (Pb0.92La0.08)(Zr0.95Ti0.05)O3 = PLZT-8/95/5 were prepared using the conventional solid state reaction method in order to investigate the complex impedance characteristics of the PLZT-8/95/5 ceramic according to temperature. The complex impedance in the PLZT-8/95/5 ceramic was measured over a temperature range of 30~550 ℃ at several frequencies. The complex dielectric constant anomaly of the phase transition was observed near TU1 = 179 ℃ and TU2 = 230 ℃. A remarkable diffuse dielectric constant anomalous behaviour of the complex dielectric constant was found between 100 ℃ and 550 ℃. The complex impedance spectra below and above TU1 and TU2 were fitted by the superposition of two Cole-Cole types of impedance relaxations. The fast component in the higher frequency region may be due to ion migration in the bulk, and the slow component in the lower frequency region is interpreted to be the formation and migration of ions at the grain boundary or electrode/crystal interfacial polarization.

Biophysical study of bioactive-substance conformation and interaction with drugs in solution

  • Yu, Byung-Sul;Lee, Bong-Jin;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • 제8권3호
    • /
    • pp.109-117
    • /
    • 1985
  • The interaction of salicylic acid (S. A.), salicylamide (S,M) with nucleic acid base derivatives such as 9-ethyl adenine (A), 1-cyclohexyl uracil (U), 2', 3'-benzylidine-5' trityl-cytidine (C), gaunosine-2', 3', 5'-isobutylate (G) has been spectroscopically investigated to determine the binding mechanism. NMR and IR spectra were measured in nonpolar solvents. The association constant K of the formation of complex was calculated from the IR spectra. Compounds S. A. and A form a 1:1 or 1:2 cyclic hydrogen-bonded complex depending on the sample concentration. Compounds S. A. and U form a 1:1 or 1:2 hydrogen-bonded complex on the sample concentration. Compounds S. A. and C form a 2:1 hydrogen-bonded complex at low concentration (0.0016M). Compound S. A. binds compound G, but its binding does not completely break the self-association of compound G, Compound S. M. binds compounds A. U. C. G. very weakly.

  • PDF

A Study on the Inclusion Complexation of Octyldimethyl p-aminobengoate with \brta -Cyclodextrin$ (Octyldiinethyl p-aminobenzoate와 \brta -Cyclodextrin$의 포접화합물에 관한 연구)

  • Lee, Chang-Hak;So, Bu-Yeong;Kim, Yeong-Su
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제15권1호
    • /
    • pp.51-62
    • /
    • 1989
  • Inclusion complex formation of octyldimethl p-aminobenzoate with $\beta$-cyclodextrin in aqueous solution and in the solid state was studied by the solubility method, spectroscopic(UV, FT-lR) and X -ray diffractometry. The solid complex of octyldimethy p-aminobenzoate with $\beta$-cyclodextrin was obtained in molar ratio of 1 : 2(guest/host). A spatial relationship between host and guest molecule was clearly reflected in the magnitude of the apparent stability constant (K') and in the stoichiometry of the inclusion complex. Furthermore, a typical type Bs phase-solubility diagram was obtained for octyldimethyl p-aminobenzoate and p -cyclodextrin in water at $25^{\circ}C$. The results indicated that the solubility of the guest molecule was higher by the formation of $\beta$-cyclodextrin inclusion complex.

  • PDF

A Study on the Inclusion Complexation of Octyldimethyl p-aminobenzoate with ${\beta}-Cyclodextrin$ (Octyldimethl p-aminobenzoate 와 ${\beta}-Cyclodextrin$의 포접화합물(包接化合物)에 관(關)한 연구(硏究))

  • Lee, Chang-Hak;So, Boo-Young;Kim, Young-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • 제6권1호
    • /
    • pp.59-66
    • /
    • 1989
  • Inclusion complex formation of octyldimethyl p-aminobenzoate with ${\beta}-cyclodextrin$in aqueous solution and in the solid state was studied by the solubility method, spectroscopic (UV, FT-IR) and X-ray diffractornetry. The solid complex of octyldimethyl p-aminobenzoate with ${\beta}-cyclodextrin$ was obtained in molar ratio of 1:2 (guest/host). A spatial relationship between host and guest molecule was clearly reflected in the magnitude of the apparent stability constant (K') and in the stoichiometry of the inclusion complex. Furthermore, a typical type Bs phase-solubility diagram was obtained for octyldimethyl p-aminobenzoate and ${\beta}-cyclodextrin$ in water at $25^{\circ}C$. The results indicated that the solubility of the guest molecule was higher by the formation of ${\beta}-cyclodextrin$ inclusion complex.

Solvent Extraction of Zinc from Strong Hydrochloric Acid Solution with Alamine336

  • Lee, Man-Seung;Nam, Sang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1526-1530
    • /
    • 2009
  • Solvent extraction reaction of Zn(II) by Alamine336 from strong HCl solution up to 10 M was identified by analyzing the data reported in the literature. The equilibrium constant of this reaction was estimated by considering the complex formation between zinc and chloride ion. The necessary thermodynamic parameters, such as equilibrium constant for the formation of complexes and the interaction parameters, were evaluated from the thermodynamic data reported in the literature. The following solvent extraction reaction and the equilibrium constant was obtained by considering the activity coefficients of solutes present in the aqueous phase with Bromley equation. $Zn^{2+}\;2Cl^{-}\;+\;R_3NHCl_{org}\;=\;ZnCl_3R_3NH_{org},\;K_{ex}\;=\;6.33\;{\times}\;10^2$ There was a good agreement between measured and calculated distribution coefficients of Zn(II).

Studies on the Formation of Inclusion Complex between Omeprazole and $\beta$-cyclodextrin (오메프라졸과 베타-시클로덱스트린과의 포접화합물 형성에 따른 특성)

  • 소재일;이창현;이계주
    • YAKHAK HOEJI
    • /
    • 제35권5호
    • /
    • pp.372-378
    • /
    • 1991
  • To increase the stability and bioavailability of Omeprazole(OMP), which is used newly as a proton-pump inhibitor, inclusion complex of OMP with $\beta$-cyclodextrin($\beta$-CD) was prepared by coprecipitation method and its characteristics were ascertained by means of solubility test, DSC, IR, and the accelerated stability analysis. The type of OMP inclusion complex is classified as Bs-type on phase solubility diagram, and the stoichiometric ratio of OMP: $\beta$-CD complex is 1:2 and formation constant is 80.82/mole. The solubility of the complex could be increased remarkably by complexation compare with OMP. Degradation process of both OMP and OMP complex followed apparent first-order kinetics, of which degradation rate constants and activation energies are k$_{25}$=8.1$\times$10$^{-4}$/day, E$_{a}$=22 Kcal/mole (OMP), and k$_{25}$=4.65$\times$10$^{-6}$/day, E$_{a}$=35 Kcal/mole (complex), respectively. These results show the increase of the stability and solubility of OMP markedly, therefore it is believed that the improvement of stabilization for OMP by inclusion complexation might be practically available.

  • PDF

Ethylenediamine Complex for Stabilization of Omeprazole (오메프라졸의 안정화를 위한 에칠렌디아민 복합체 개발)

  • Oh, Sea-Jong;Kim, Eun-Young;Kim, Kil-Soo;Kim, Yuon-Jeung;Lee, Gye-Ju
    • Journal of Pharmaceutical Investigation
    • /
    • 제25권1호
    • /
    • pp.9-17
    • /
    • 1995
  • To stabilize omeprazole(OMP), ethylenediamine(ED) complex of omeprazole(OMPED) was prepared by reaction between OMP and ED in methanol, and the complex formation was confirmed by the instrumental analysis, i.e., IR, DSC, EA, NMR, MS and XRD. The rates of decomposition of OMP and OMPED in aqueous solution and the shelf lives at standard temperature were measured by accelerated stability analysis. The results are summarized as follows; The mole ratio of OMP and ED in OMPED complex is 1:1, the energy of formation within OMPED might be combined between polar imidazole group of OMP with induced a dipole amine group in the readily polarizable ED molecule. At standard temperature the degradation rate constant of OMP in aqueous solution is $2.540{\times}10^{-2}\;hr^{-1}$ and the shelf life is 4.15 hrs, and in the case of OMPED the degradation rate constant is $7.986{\times}10^{-4}\;hr^{-1}$ and the shelf life is 131.96 hrs. So, the OMPED has about 31 times longer shelf life than OMP. The activation energy of OMP and OMPED are 5.23 and 18.55 kcal $mole^{-1}$ respectively. The stability of OMP is dependent chiefly on pH in the solutions and it decomposes readily in acidic medium by hydrogen ion catalized reaction but becomes stable beyond pH 9.0. In case of the ED-complex, OMPED is stable in neutral as well as in dilute acidic solutions even in pH 6, OMPED is very stable to light(UV), that is, the rate constant and shelf life of OMP are $k=1.0188{\times}10^{-2}\;day^{-1}$, $T_{90%}=4.5 \;days$, on the other hand, the those of OMPED are $k=7.138{\times}10^{-4}\;day^{-1}$, $T_{90%}=64.1\;days$, respectively. From the above results, it is thought that new dosage forms could be developed by using the OMPED as a potential OMP complex.

  • PDF

Electrochemical Reduction of Oxygen at Co(II)-3,4-bis (salicylidene diimine)toluene Complex supported Glassy Carbon Electrode

  • 최용국;조기형;박경희
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권1호
    • /
    • pp.21-26
    • /
    • 1995
  • Electrochemical reduction of oxygen has been carried out at glassy carbon electrode and carbon ultramicroelectrode, the surface of which is modified with a new Co(Ⅱ)-Schiff base complex, Co(Ⅱ)-3,4-bis(salicylidene diimine)toluene in 1 M KOH solution. The results obtained from cyclic voltammetric and chronoamperometric experiments are consistent with the formation of the reasonably stable superoxide ions as a primary electron transfer reaction product. The exchange rate constant obtained for oxygen reduction is about 0.02 cm/s.