• Title/Summary/Keyword: Complex Terrain

Search Result 334, Processing Time 0.027 seconds

Relationship between Solar Radiation in Complex Terrains and Shaded Relief Images (복잡지형에서의 일사량과 휘도 간의 관계 구명)

  • Yun, Eun-Jeong;Kim, Dae-Jun;Kim, Jin-Hee;Kang, Dae-Gyoon;Kim, Soo-Ock;Kim, Yongseok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.283-294
    • /
    • 2021
  • Solar radiation is an important meteorological factor in the agricultural sector. The ground exposed to sunlight is highly influenced by the surrounding terrains especially in South Korea where the topology is complex. The solar radiation on an inclined surface is estimated using a solar irradiance correction factor for the slope of the terrain along with the solar radiation on a horizontal surface. However, such an estimation method assumes that there is no barrier in surroundings, which blocks sunlight from the sky. This would result in errors in estimation of solar radiation because the effect of shading caused by the surrounding terrain has not been taken into account sufficiently. In this study, the shading effect was simulated to obtain the brightness value (BV), which was used as a correction factor. The shaded relief images, which were generated using a 30m-resolution digital elevation model (DEM), were used to derive the BVs. These images were also prepared using the position of the sun and the relief of the terrain as inputs. The gridded data where the variation of direct solar radiation was quantified as brightness were obtained. The value of cells in the gridded data ranged from 0 (the darkest value) to 255 (the brightest value). The BV analysis was performed using meteorological observation data at 22 stations installed in study area. The observed insolation was compared with the BV of each point under clear and cloudless condition. It was found that brightness values were significantly correlated with the solar radiation, which confirmed that shading due to terrain could explain the variation in direct solar radiation. Further studies are needed to accurately estimate detailed solar radiation using shaded relief images and brightness values.

Normalized Digital Surface Model Extraction and Slope Parameter Determination through Region Growing of UAV Data (무인항공기 데이터의 영역 확장법 적용을 통한 정규수치표면모델 추출 및 경사도 파라미터 설정)

  • Yeom, Junho;Lee, Wonhee;Kim, Taeheon;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.499-506
    • /
    • 2019
  • NDSM (Normalized Digital Surface Model) is key information for the detailed analysis of remote sensing data. Although NDSM can be simply obtained by subtracting a DTM (Digital Terrain Model) from a DSM (Digital Surface Model), in case of UAV (Unmanned Aerial Vehicle) data, it is difficult to get an accurate DTM due to high resolution characteristics of UAV data containing a large number of complex objects on the ground such as vegetation and urban structures. In this study, RGB-based UAV vegetation index, ExG (Excess Green) was used to extract initial seed points having low ExG values for region growing such that a DTM can be generated cost-effectively based on high resolution UAV data. For this process, local window analysis was applied to resolve the problem of erroneous seed point extraction from local low ExG points. Using the DSM values of seed points, region growing was applied to merge neighboring terrain pixels. Slope criteria were adopted for the region growing process and the seed points were determined as terrain points in case the size of segments is larger than 0.25 ㎡. Various slope criteria were tested to derive the optimized value for UAV data-based NDSM generation. Finally, the extracted terrain points were evaluated and interpolation was performed using the terrain points to generate an NDSM. The proposed method was applied to agricultural area in order to extract the above ground heights of crops and check feasibility of agricultural monitoring.

Real-Time Terrain Visualization with Hierarchical Structure (실시간 시각화를 위한 계층 구조 구축 기법 개발)

  • Park, Chan Su;Suh, Yong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.311-318
    • /
    • 2009
  • Interactive terrain visualization is an important research area with applications in GIS, games, virtual reality, scientific visualization and flight simulators, besides having military use. This is a complex and challenging problem considering that some applications require precise visualizations of huge data sets at real-time rates. In general, the size of data sets makes rendering at real-time difficult since the terrain data cannot fit entirely in memory. In this paper, we suggest the effective Real-time LOD(level-of-detail) algorithm for displaying the huge terrain data and processing mass geometry. We used a hierarchy structure with $4{\times}4$ and $2{\times}2$ tiles for real-time rendering of mass volume DEM which acquired from Digital map, LiDAR, DTM and DSM. Moreover, texture mapping is performed to visualize realistically while displaying height data of normalized Giga Byte level with user oriented terrain information and creating hill shade map using height data to hierarchy tile structure of file type. Large volume of terrain data was transformed to LOD data for real time visualization. This paper show the new LOD algorithm for seamless visualization, high quality, minimize the data loss and maximize the frame speed.

Estimation of hourly daytime air temperature on slope in complex terrain corrected by hourly solar radiation (복잡지형 경사면의 일사 영향을 반영한 매시 낮 기온 추정 방법)

  • Yun, Eun-jeong;Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.376-385
    • /
    • 2018
  • To estimate the hourly temperature distribution due to solar radiation during the day, on slope in complex terrain, an empirical formula was developed including the hourly deviation in the observed temperature following solar radiation deviation, at weather stations on the east-facing and west-facing slopes. The solar radiation effect was simulated using the empirical formula to estimate hourly temperature at 11 weather observation sites in mountainous agricultural areas, and the result was verified for the period from January 2015 to December 2017. When the estimated temperature was compared with the control, only considering temperature lapse rate, it was found that the tendency to underestimate the temperature from 9 am to 3 pm was reduced with the use of an empirical formula in the form of linear expression; consequently, the estimation error was reduced as well. However, for the time from 5 pm to 6 pm, the estimation error was smaller when a hyperbolic equation drawn from the deviation in solar radiation on the slope, which was calculated based on geometric conditions, was used instead of observed values. The reliability of estimating the daytime temperature at 3 pm was compared with existing estimation model proposed in other studies; the estimation error could be mitigated up to an ME (mean error) of $-0.28^{\circ}C$ and RMSE (root mean square error) of $1.29^{\circ}C$ compared to the estimation error in previous models (ME $-1.20^{\circ}C$, RMSE $2.01^{\circ}C$).

Analysis of Wind Environments for Siting a Wind Farm (풍력발전 단지조성을 위한 바람환경 분석)

  • 김현구;최재우;손정봉;정우식;이화운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.745-756
    • /
    • 2003
  • An analysis of wind environments using computational fluid dynamics and an evaluation of wind resources using measurement data obtained from meteorological observation sites at Homi-Cape, Pohang have been carrid out for siting a wind farm. It was shown that a numerical simulation using computational fluid dynamics would provide reliable wind resource map in complex terrain with land-sea breeze condition. As a result of this investigation, Homi-Cape wind farm with 11.25 ㎿ capacity has been designed for maximum power generation and 25.7 GWh electricity production is predicted.

Improvement of Air Pollution Prediction for Complex Terrain by Integrating of GIS and Air Pollution Models (지리정보시스템과 대기확산모델 통합에 의한 복잡지형 대기오염예측의 개선)

  • 박옥현;유은철;박민석
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.131-132
    • /
    • 2003
  • 확산 모델의 선정은 도시, 임해 산악 지역, 임해 평야지역, 계곡지역, 분지지역 등 각 지형에 대해 계절별, 오염물질별, 평균화시간별로 적절성이 있어 보이는 여러 경쟁모델들을 적용해 보고 그 중에서 실측결과에 가장 근접하는 계산치를 제공하는 모델을 선정해야 한다. 특히 Dioxin등 독성물질들에 대해서는 대부분의 해석학적 확산모델들을 적용하기 곤란한 저풍속, 풍향요동(Meandering) 조건시 등에도 단시간 평균농도 계산치의 정확도가 높은 모델들을 선정하는 것이 중요하다(박옥현 등, 1999). (중략)

  • PDF

Turbulent Characteristics over the Complex Terrain (복잡한 지형에서 대기 난류의 특성)

  • 박문수;박순웅
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.194-196
    • /
    • 2000
  • 지표면과 대기 사이의 운동량, 현열 그리고 수증기의 교환은 기상학의 영역에서 뿐만아니라 수문학이나 농업의 영역에서도 매우 중요하다. 그리고 이러한 교환 과정을 보다 잘 이해하기 위해서는 대기 난류의 특성에 대한 이해가 선행되어야 한다. 대기 난류의 특성들에 대한지금까지의 많은 연구들은 주로 지표면이 평평하고 균질한 지형에서의 관측을 통해 이루어졌으며 이 결과들을 토대로 다양한 플럭스들이 매개변수화되어졌다. (중략)

  • PDF

Daily Maximum Temperature Mapping in Complex Terrain by Applying "Overheating Index" (과열지수를 이용한 복잡지형의 일 최고기온분포 추정)

  • 정유란;정일빈;서형호;황범석
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2002.11a
    • /
    • pp.77-80
    • /
    • 2002
  • 기온은 생물의 대사과정에 직접적인 영향을 끼침으로서 생장과 발육을 결정하는 중요한 환경요인이며, 특히 식물은 개체 및 군락 수준에서 기온의 일 변화, 계절변화, 혹은 영년 변화에 반응한다. 최근의 농업 및 삼림 생태계 연구는 기온을 비롯한 환경요인의 영향을 생리과정의 정량적 모의를 근거로 이해하고, 이를 넓은 지역으로 확대하여 다양한 시간적 주기로 예측하는 방향으로 나아가고 있다 (Chung et al., 2002).(중략)

  • PDF

Generation of Running Motion on Complex Terrain (복합 지형에서의 달리기 동작 생성에 대한 연구)

  • Song, Mi-Young;Cho, Hyung-Je
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.153-156
    • /
    • 2004
  • 이 연구에서는 동작 포착 데이터에서 최적의 동작을 얻기 위한 비용과 시간을 줄이고, 캐릭터의 체형 크기에 무관하게 복합 지형에서 적응적인 이동 동작을 빠르고 효율적으로 생성하는 방법을 제안한다. 즉 캐릭터의 신장이나 걷는 속도, 걸음폭 등의 매개변수들을 사용하여 평지면, 경사면, 계단면 그리고 굴곡면 등 다양한 지형에서의 달리기 동작을 생성하며 역운동학(Inverse Kinematics) 개념을 적용하여 관절들의 위치나 각도를 산출하고 관절의 이동 궤적을 계산하기 위해 큐빅 스플라인 곡선을 활용한다.

  • PDF

Downscaling of Sunshine Duration for a Complex Terrain Based on the Shaded Relief Image and the Sky Condition (하늘상태와 음영기복도에 근거한 복잡지형의 일조시간 분포 상세화)

  • Kim, Seung-Ho;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.233-241
    • /
    • 2016
  • Experiments were carried out to quantify the topographic effects on attenuation of sunshine in complex terrain and the results are expected to help convert the coarse resolution sunshine duration information provided by the Korea Meteorological Administration (KMA) into a detailed map reflecting the terrain characteristics of mountainous watershed. Hourly shaded relief images for one year, each pixel consisting of 0 to 255 brightness value, were constructed by applying techniques of shadow modeling and skyline analysis to the 3m resolution digital elevation model for an experimental watershed on the southern slope of Mt. Jiri in Korea. By using a bimetal sunshine recorder, sunshine duration was measured at three points with different terrain conditions in the watershed from May 15, 2015 to May 14, 2016. The brightness values of the 3 corresponding pixel points on the shaded relief map were extracted and regressed to the measured sunshine duration, resulting in a brightness-sunshine duration response curve for a clear day. We devised a method to calibrate this curve equation according to sky condition categorized by cloud amount and used it to derive an empirical model for estimating sunshine duration over a complex terrain. When the performance of this model was compared with a conventional scheme for estimating sunshine duration over a horizontal plane, the estimation bias was improved remarkably and the root mean square error for daily sunshine hour was 1.7hr, which is a reduction by 37% from the conventional method. In order to apply this model to a given area, the clear-sky sunshine duration of each pixel should be produced on hourly intervals first, by driving the curve equation with the hourly shaded relief image of the area. Next, the cloud effect is corrected by 3-hourly 'sky condition' of the KMA digital forecast products. Finally, daily sunshine hour can be obtained by accumulating the hourly sunshine duration. A detailed sunshine duration distribution of 3m horizontal resolution was obtained by applying this procedure to the experimental watershed.