• Title/Summary/Keyword: Complex Terrain

Search Result 332, Processing Time 0.03 seconds

Refined numerical simulation in wind resource assessment

  • Cheng, Xue-Ling;Li, Jun;Hu, Fei;Xu, Jingjing;Zhu, Rong
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.59-74
    • /
    • 2015
  • A coupled model system for Wind Resource Assessment (WRA) was studied. Using a mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, global-scale data were downscaled to the inner nested grid scale (typically a few kilometers), and then through the coupling Computational Fluid Dynamics (CFD) mode, FLUENT. High-resolution results (50 m in the horizontal direction; 10 m in the vertical direction below 150 m) of the wind speed distribution data and ultimately refined wind farm information, were obtained. The refined WRF/FLUENT system was then applied to assess the wind resource over complex terrain in the northern Poyang Lake region. The results showed that the approach is viable for the assessment of wind energy.

Wind Farm Design Considering Turbulence Intensity on Complex Terrain (복잡지형에서 난류강도를 고려한 풍력발전단지설계)

  • Park, Mi-Ho;Ko, Kyung-Nam;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.1-11
    • /
    • 2013
  • The investigation on wind farm design using CFD technique was carried out to reduce turbulence intensity in a wind farm. A potential wind farm in Gasiri of Jeju Island was selected for the design and the commercial S/W of Meteodyn WT was used for applying CFD technique. The initial layout of wind turbines was derived using WindPRO which is mainly used for wind farm design in Korea. Then, the distribution of turbulence intensity on complex terrain was calculated and visible by Meteodyn WT. Based on the distribution, wind turbines were positioned properly. As a result, wind turbines could be deployed at positions with minimum turbulence intensity as well as maximum Annual Energy Production, AEP, using Meteodyn WT. It is necessary to take into account turbulence intensity in wind farm design to avoid wind turbine failure.

The Air Quality Modeling According to the Emission Scenarios on Complex Area (복잡지형에서의 배출량 시나리오에 따른 대기질 수치모의)

  • Lee, Hwa-Woon;Choi, Hyun-Jung;Lee, Soon-Hwan;Lim, Heon-Ho;Lee, Kang-Yoel;Sung, Kyoung-Hee;Jung, Woo-Sik;Park, Jeong-Im;Moon, Nan-Kyung
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.921-928
    • /
    • 2007
  • The objective of this work is the air quality modeling according to the scenarios of emission on complex terrain. The prognostic meteorological fields and air quality field over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model (MM5) and the Third Generation Community Multi-scale Air Quality Modeling System (Models - 3/CMAQ), respectively. The emission source was driven from the Clean Air Policy Support System of the Korea National institute of Environmental Research (CAPSS), which is a 1 km x 1 km grid in South Korea during 2003. In comparison of air quality fields, the simulated averaged $PM_{10},\;NO_2,\;and\;O_3$ concentration on complex terrain in control case were decreased as compared with base case. Particularly $PM_{10}$ revealed most substantial localized differences by $(18{\sim}24{\mu}g/m^3)$. The reduction rate of $PM_{10},\;NO_2,\;and\;O_3$ is respectively 18.88, 13.34 and 4.17%.

Skillful Wind Field Simulation over Complex Terrain using Coupling System of Atmospheric Prognostic and Diagnostic Models (대기예보모형과 진단모형 결합을 통한 복잡지형 바람장 해석능력 평가)

  • Lee, Hwa-Woon;Kim, Dong-Hyeok;Lee, Soon-Hwan;Kim, Min-Jung;Park, Soon-Young;Kim, Hyun-Goo
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.27-37
    • /
    • 2010
  • A system coupled the prognostic WRF mesoscale model and CALMET diagnostic model has been employed for predicting high-resolution wind field over complex coastal area. WRF has three nested grids down to from during two days from 24 August 2007 to 26 August 2007. CALMET simulation is performed using both initial meteorological field from WRF coarsest results and surface boundary condition that is Shuttle Radar Topography Mission (SRTM) 90m topography and Environmental Geographic Information System (EGIS) 30m landuse during same periods above. Four Automatic Weather System (AWS) and a Sonic Detection And Ranging (SODAR) are used to verify modeled wind fields. Horizontal wind fields in CM_100m is not only more complex but better simulated than WRF_1km results at Backwoon and Geumho in which there are shown stagnation, blocking effects and orographically driven winds. Being increased in horizontal grid spacing, CM_100m is well matched with vertically wind profile compared SODAR. This also mentions the importance of high-resolution surface boundary conditions when horizontal grid spacing is increased to produce detailed wind fields over complex terrain features.

LOSSLESS DATA COMPRESSION ON SAR DISPLAY IMAGES (SAR 디스플레이 영상을 위한 무손실 압축)

  • Lee, Tae-hee;Song, Woo-jin;Do, Dae-won;Kwon, Jun-chan;Yoon, Byung-woo
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.117-120
    • /
    • 2001
  • Synthetic aperture radar (SAR) is a promising active remote sensing technique to obtain large terrain information of the earth in all-weather conditions. SAR is useful in many applications, including terrain mapping and geographic information system (GIS), which use SAR display images. Usually, these applications need the enormous data storage because they deal with wide terrain images with high resolution. So, compression technique is a useful approach to deal with SAR display images with limited storage. Because there is some indispensable data loss through the conversion of a complex SAR image to a display image, some applications, which need high-resolution images, cannot tolerate more data loss during compression. Therefore, lossless compression is appropriate to these applications. In this paper, we propose a novel lossless compression technique for a SAR display image using one-step predictor and block arithmetic coding.

  • PDF

An Analysis on the change in Topography in the West Coast Using Landsat Image (Landsat 영상을 이용한 서해안 지형 변화 추이 분석)

  • 강준묵;윤희천;강영미
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.275-279
    • /
    • 2004
  • This study was done to detect the topographic and terrain change of the vicinity of the west coast. To make the basic map of the change in topology and terrain, the mosaic images were made using the images from the satellite, which were given the geometric correction based on the GCP (Ground Control Point) and DEM (Digital Elenation Model) data. The accuracy of the images was examined by .empaling them with CCP through 1:25,000's digital map. After that, among the resultant images of the 1970s and 2000s, those of Sihwa, Hwaong and Ansan, the lands reclaimed by drainage were compared to observe the change in the area. From this study, the accuracy of the images of the west coast from satellite could be acquired and the change of the topology and terrain was detected effectively. From the results, it was known that, in case of the land the topological change was not so big due to the development in the reclaimed land or the bare land. In Sihwa, the size of the land was increased 180 $\textrm{km}^2$ and that of the seashore was decreased 110 km. in Hwaong the size was increased 50 $\textrm{km}^2$ and in Ansan the city space was increased 71 $\textrm{km}^2$ due to the formation of the industrial complex.

  • PDF

Low Level Wind Shear Characteristics and Predictability at the Jeju International Airport (제주국제공항 저층급변풍 발생 특성 및 예측 성능)

  • Geun-Hoi Kim;Hee-Wook Choi;Jae-Hyeok Seok;Sang-Sam Lee;Yong Hee Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.3
    • /
    • pp.50-58
    • /
    • 2023
  • Sudden wind changes at low altitudes pose a significant threat to aircraft operations. In particular, airports located in regions with complex terrain are susceptible to frequent abrupt wind variations, affecting aircraft takeoff and landing. To mitigate these risks, Low Level Wind shear Alert System (LLWAS) have been implemented at airports. This study focuses on understanding the characteristics of wind shear and developing a prediction model for Jeju International Airport, which experiences frequent wind shear due to the influence of Halla Mountain and its surrounding terrain. Using two years of LLWAS data, the study examines the occurrence patterns of wind shear at Jeju International Airport. Additionally, high-resolution numerical model is utilized to produce forecasted information on wind shear. Furthermore, a comparison is made between the predicted wind shear and LLWAS observation data to assess the prediction performance. The results demonstrate that the prediction model shows high accuracy in predicting wind shear caused by southerly winds.

Simulations of Changes in Wind Field Over Mountainous Terrains Using WRF and ENVI-met Numerical Models (WRF와 ENVI-met 수치 모델을 이용한 산악지형의 바람장 변화 모사)

  • Won, Myoungsoo;Han, Seonho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper we interpreted the changes in wind field over complex mountainous terrains. The results of our study can be applied for predicting the direction of fire spread and for establishing strategies for fire prevention. The study area is bounded by $12{\times}12$ km domains of the Samcheok's long-term ecological research (LTER) site located in the east coast, in which a large-fire had occurred from 7 to 13 April 2000. Because of the area's complex topography, we compared the result of the Weather Research and Forecasting (WRF) mesoscale model with those observed by four automated weather stations. The WRF simulation overestimated the wind speed by 5 to 8 m/s (~200%) in comparison with those from four automated weather stations. The wind directions observed by the AWSs were from various directions whereas those from WRF model were mostly west wind at all stations. Overall, the simulations by the WRF mesoscale models were not appropriate for the estimation of microscale wind fields over complex mountainous areas. To overcome such inadequacy of reproducing the wind fields, we employed the ENVI-met model over Samcheok's LTER site. In order to test the model's sensitivity with the terrain effects, experimental simulations were conducted with various initial conditions. The simulation results of the ENVI-met model showed a reasonable agreement in wind speeds (about 70% accuracy) with those of the four AWSs. Also, that the variations in wind directions agreed reasonably well with changes in terrain effect. We concluded that the ENVI-met model is more appropriate in representing the microscale wind field over complex mountain terrains, which is required to predict fire spread and to establish strategies for forest fire prevention.

Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: Correction Method for Daytime Hourly Air Temperature over Complex Terrain (기상청 동네예보의 영농활용도 증진을 위한 방안: 복잡지형의 낮 기온 상세화 기법)

  • Yun, Eun-jeong;Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.221-228
    • /
    • 2019
  • The effects of wind speed on the temperature change during day time could be insignificant in a region with a complex terrain. The objective of this study was to derive empirical relationship between solar radiation and hourly temperature under a windy condition for the period from sunrise to sunset in order to improve hourly air temperature at a site-specific scale. The deviation of the temperature measurements was analyzed along with the changes of the hourly sunlight at weather observation sites located on the east and west slopes under given wind speed. An empirical model where wind speed use used as an independent variable was obtained to quantify the solar effects on the temperature change (MJ/㎡). This model was verified estimating the hourly temperature during the daytime (0600-1900 h) at 25 weather observation sites located in the study area that has complex topography for the period from January to December 2018. The mean error (ME) and root mean square error (RMSE)of the estimated and measured values ranged from -0.98 to 0.67 ℃, and from 0.95 to 2.04 ℃, respectively. The daytime temperature at 1500 h were estimated using new and previous models. It was found that to the model proposed in the present study reduced the measurement errors of the hourly temperature in the afternoon in comparison with the previous model. For example, the ME and RMSE of the previous model were (ME -0.91 ℃ and 1.47 ℃, respectively. In contrast, the values of ME and RMSE were -0.45 ℃ and 1.22 ℃ for the new model, respectively. Our results suggested that the reliability of hourly temperature estimates at a specific site could be improved taking into account the effect of wind as well as solar radiation.

A Lagrangian Stochastic Model for Dense Gas Dispersion in the Neutrally-stratified Atmospheric Surface Layer (이상적인 중립 대기경계층에서 고밀도가스의 확산예측을 위한 라그랑지안 확률모델)

  • Kim, Byung-Gu;Lee, Changhoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.537-545
    • /
    • 2005
  • A new dispersion model for dense gas is constructed in the Lagrangian framework. Prediction of concentration by the proposed model is compared with measure data obtained in the experiment conducted in Thorney Island in 1984. Two major effects of dense gas dispersion, gravity slumping and stratification effect, are successfully incorporated into LDM (Lagrangian dense gas model). Entrainment effect is naturally modelled by introducing stochastic dispersion model with the effect of turbulence suppression by stratification. Not only various releasing conditions but also complex terrain can be extended to, although proposed model is appropriate for flat terrain.