• 제목/요약/키워드: Complex I

검색결과 2,949건 처리시간 0.031초

Control of Electrically Excited Synchronous Motors with a Low Switching Frequency

  • Yuan, Qing-Qing;Wu, Xiao-Jie;Dai, Peng;Fu, Xiao
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.615-622
    • /
    • 2012
  • The switching frequency of the power electronic devices used in large synchronous motor drives is usually kept low (less than 1 kHz) to reduce the switching losses and to improve the converter power capability. However, this results in a couple of problems, e.g. an increase in the harmonic components of the stator current, and an undesired cross-coupling between the magnetization current component ($i_m$) and the torque component ($i_t$). In this paper, a novel complex matrix model of electrically excited synchronous motors (EESM) was established with a new control scheme for coping with the low switching frequency issues. First, a hybrid observer was proposed to identify the instantaneous fundamental component of the stator current, which results in an obvious reduction of both the total harmonic distortion (THD) and the low order harmonics. Then, a novel complex current controller was designed to realize the decoupling between $i_m$ and $i_t$. Simulation and experimental results verify the effectiveness of this novel control system for EESM drives.

Structural characterization and thermal behaviour of the bis(2-aminothiazole)bis(isothiocyanato)zinc(II) complex, Zn(NCS)2(C3H4N2S)2

  • Suh, Seung Wook;Kim, Inn Hoe;Kim, Chong-Hyeak
    • 분석과학
    • /
    • 제18권5호
    • /
    • pp.386-390
    • /
    • 2005
  • The zinc(II) complex, $Zn(NCS)_2(C_3H_4N_2S)_2$, I, has been synthesized and characterized by single crystal X-ray diffraction, thermal analysis and infrared spectroscopy. The complex I crystallizes in the triclinic system, $P\bar{1}$ space group with a = 7.587(1), b = 8.815(1), $c=12.432(2){\AA}$, ${\alpha}=75.584(8)$, ${\beta}=83.533(9)$, ${\gamma}=68.686(8)^{\circ}$, $V=750.0(2){\AA}^3$, Z = 2, $R_1=0.036$ and ${\omega}R_2=0.101$. The central Zn(II) atom has a tetrahedral coordination geometry, with the heterocyclic nitrogen atoms of 2-aminothiazole ligands and the nitrogen atoms of isothiocyanate ligands. The crystal structure is stabilized by one-dimensional networks of the intermolecular $N-H{\cdots}S$ hydrogen bonds between the amino group of 2-aminothiazole ligands and the sulfur atom of isothiocyanate ligands. Based on the results of thermal analysis, the thermal decomposition reaction of complex I was analyzed to have three distinctive stages such as the loss of 2-aminothiazole, the decomposition of isothiocyanate and the formation of metal oxide.

칼슘 이온으로 완전히 치환된 제올라이트 A의 탈수 구조와 칼슘 치환 제올라이트 A에 요오드가 흡착된 착물 구조 (The Structures of Dehydrated Fully $Ca^{2+}$-Exchanged Zeolite A and of Its iodine Sorption Complex)

  • 장세복;한영욱;김덕수;김양
    • 한국결정학회지
    • /
    • 제1권2호
    • /
    • pp.76-83
    • /
    • 1990
  • 완전히 Ca2+ 이온으로 치환된 탈수구조(a=12 2f3(2) .41와 이 결정에 요오드가 흡착된 구조(a= 12.258(2) 입)를 21살에서 입방공간군 Pm3m를 사 용하여 단결정 X-선 회절법으로 구조를 해석하였다. 탈수구조는 I>3 w (I)인 206개의 반사를 사용하 여 Rw값이 0.081까지 정밀화되었고 요오드가 흡착 된 구조는 173개의 반사를 사용하여 Rw값이 0.084 까지 정밀화되었다. 각각의 구조에서 단위세포당 6 개의 Ca2+ 이온은 6-링의 산소와 결합하면서 3개 의 다른 3회 회전축상에 위치하였다. 탈수한 칼슘 치환 제올라이트 A는 80살에서 단위세포당 여섯개의 요오드 분자를 흡착하며 각 요오드 분자는 골조 산소 원자와 전하이동 착물을 형성하였다(I-0=3. 32(3) A, I-I=2.7l (2) A 그리고 I-I-0=180℃).

  • PDF

XPS를 이용한 Cu/Polyimide 계면에 관한 연구 : 상온에서 증착한 Cu의 초기성장과정(I) (Study on the Cu/polyimide interface using XPS: Initial growth of Cu sputter-deposited on the polyimide at room temperature (I))

  • 이연승;황정남
    • 한국진공학회지
    • /
    • 제6권3호
    • /
    • pp.187-193
    • /
    • 1997
  • 상온에서 polyimide 위에 증착한 Cu의 초기성장 과정과 Cu/polyimide의 계면의 형 태에 관하여 XPS를 이용하여 관찰하였다. Polyimide 위에 Cu가 증착됨에 따라, 초기단계에 는 강한 결합의 Cu-N-O complex가 주가 되어 Cu/polyimide 계명을 형성하고, Cu의 증착 두께가 증가함에 따라, 약한 결합의 Cu산화물에서 서서히 metallic Cu로서 성장하는 것을 볼 수 있었다. 이상이 결과들을 통해, Cu/polyimide의 계면은 Cu-N-O complex와 Cu산화물 이 혼합되어 있는 형태이며 polyimide 표면에 가까울수록 Cu-N-O complex가 주가 되고, Cu쪽에 가까울수록 Cu산화물이 주가 되는 형태를 이루고 있다는 것을 알 수 있었다.

  • PDF

COMPLEX MOMENT MATRICES VIA HALMOS-BRAM AND EMBRY CONDITIONS

  • Li, Chunji;Jung, Il-Bong;Park, Sang-Soo
    • 대한수학회지
    • /
    • 제44권4호
    • /
    • pp.949-970
    • /
    • 2007
  • By considering a bridge between Bram-Halmos and Embry characterizations for the subnormality of cyclic operators, we extend the Curto-Fialkow and Embry truncated complex moment problem, and solve the problem finding the finitely atomic representing measure ${\mu}$ such that ${\gamma}_{ij}={\int}\bar{z}^iz^jd{\mu},\;(0{\le}i+j{\le}2n,\;|i-j|{\le}n+s,\;0{\le}s{\le}n);$ the cases of s = n and s = 0 are induced by Bram-Halmos and Embry characterizations, respectively. The former is the Curto-Fialkow truncated complex moment problem and the latter is the Embry truncated complex moment problem.

Synthesis and Structural Characterization of Five- and Six-Coordinate Cobalt(Ⅱ) Complexes of Tripodal Liand. Tris-(2-benzimidazolylmethyl)amine

  • 라명수;문무신
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권4호
    • /
    • pp.406-409
    • /
    • 1997
  • The various cobalt(Ⅱ) complexes were synthesized and characterized using tris-(2-benzimidazolylmethyl)amine (ntb) as a ligand where the ntb plays as a tripodal tetradentate ligand to form complexes with a trigonal pyramidal geometry. The complexes have 5 and 6 coordinate cobalt(Ⅱ) ions depending on the additional ligand used. In each complex the additional ligand, chloride anion, or acetate anion occupies the "open" site trans to the apical tertiary nitrogen atom of ntb ligand. Complex 1, [Co(Ⅱ)(ntb)Cl]Cl has a trigonal bipyramidal geometry. This geometry was easily constructed using ntb as a tetradentate ligand and chloride as a monodentate ligand. The complex is isostructural to the corresponding manganese(Ⅱ) complex. Crystal data are as follows: [Co(Ⅱ)(ntb)Cl]Cl·MeOH, 1. triclinic space group P1; a=13.524(2) Å, b=14.037(2) Å, c=17.275(1) Å; α=78.798(9), β=84.159(8)°, γ=65.504(9)°; V=2929.6(6) Å3; Z=4; R1=0.0715, wR2=0.1461 for reflections of I > 2σ(I). Six coordinate complex 2 [Co(ntb)(OAc)](OAc) was synthesized using ntb as a tetradentate ligand and acetate as a bidentate chelating ligand.

Genomic Heterogeneity in Clinical Strains of Mycobacterium tuberculosis, M. terrae Complex, M. gordonae, M. avium-intracellulae Complex and M. fortuitum by Pulsed-Field Gel Electrophoresis

  • Kim, Jeong-Ran;Kang, Bong-Seok;Ko, Jeong-Heon;Park, Jin-Suk;Kim, Sang-Jae;Bai, Gil-Hwan;Chung, Tae-Ho;Nam, Kyung-Soo;Choi, Yong-Kyung;Choe, In-Sung;Chung, Tae-Wha;Lee, Young-Choon;Kim, Cheorl-Ho
    • BMB Reports
    • /
    • 제29권6호
    • /
    • pp.569-573
    • /
    • 1996
  • Clinical strains of Mycobacterium tuberculosis, M. terrae complex, M. gordonae, M. avium-intracellulae complex, and M. fortuitum from Korean patients were isolated and analyzed by comparing large restriction fragment (LRF) patterns produced by digestion of genomic DNA with infrequent-cutting endonucleases like AsnI and XbaI. and pulsed-field gel electrophoresis (PFGE). Three M. tuberculosis, two M. terrae complex, two M. gordonae, two M. avium-intracellulae complex, and two M. fortuitum strains were compared by using AsnI and XbaI. and this allowed easy visual separation of all epidemiologically unrelated strains. PFGE exhibits different DNA restriction patterns which are easy to compare. Genome size of the strains roughly ranged from 3020 to 3335 kb. The LRF patterns are useful for epidemiologic studies of tuberculosis with regard to drug resistance.

  • PDF

만성 신부전증 환자에서 미토콘드리아 활성과 청력손실과의 연관성 (An Association between Mitochondrial Enzyme Activity and Hearing Loss in Patients with Chronic Renal Failure)

  • 김은숙;안선호;김신무;소홍섭;박래길
    • 대한임상검사과학회지
    • /
    • 제38권3호
    • /
    • pp.218-223
    • /
    • 2006
  • Sensorineural hearing loss is frequently found in patients with chronic renal failure (CRF). There have been many efforts to elucidate the etiologic factors of hearing loss in patients with CRF. However, there was not any clear identified cause of hearing loss. This study was undertaken to evaluate the activity of mitochondrial respiratory chain (MRC) in CRF patients with hearing impairment. To determine MRC activity, peripheral blood cells were obtained from CRF patients with hearing impairment receiving dialysis and normal subjects without any hearing problems. MRC activity of complex I and complex III was measured by the Trounces method. In MRC activities between the normal subjects group and CRF patients with hearing problems, the complex I and III activities of CRF patients with hearing problems were 63% and 85% compared with normal subjects (p<0.01). These results suggest that the activity of MRC may be implicated in the underlying mechanism of the hearing impairment in CRF patients, through mitochondrial DNA mutations at MRC complex I region with a decrement of MRC activity.

  • PDF

Functional Expression of the Internal Rotenone-Insensitive NADH-Quinone Oxidoreductase (NDI1) Gene of Saccharomyces cerevisiae in Human HeLa Cells

  • Seo, Byoung-Boo
    • 한국수정란이식학회지
    • /
    • 제25권1호
    • /
    • pp.35-42
    • /
    • 2010
  • Many studies propose that dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I) is associated with neurodegenerative disorders, such as Parkinson's disease and Huntington's disease. Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. With a recombinant adeno-associated virus vector carrying the NDI1 gene (rAAV-NDI1) as the gene delivery method, we were able to attain high transduction efficiencies even in the human epithelial cervical cancer cells that are difficult to transfect by lipofection or calcium phosphate precipitation methods. Using a rAAV-NDI1, we demonstrated that the Ndi1 enzyme is successfully expressed in HeLa cells. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced HeLa cells were not affected by rotenone which is inhibitor of complex I, but was inhibited by flavone and antimycin A. The NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. In particular, in the NDI1-transduced cells, the yeast enzyme becomes integrated into the human respiratory chain. It is concluded that the NDI1 gene provides a potentially useful tool for gene therapy of mitochondrial diseases caused by complex I deficiency.

Two New closo- or nido-Carborane Diphosphine Complexes: Synthesis, Characterization and Crystal Structures

  • Kong, Lingqian;Zhang, Daopeng;Su, Fangfang;Li, Dacheng;Dou, Jianmin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2249-2252
    • /
    • 2011
  • Two new carborane complexes containing closo- or nido-carborane diphosphine ligands with the formula: complex $[Hg(7,8-(PPh_2)_2-7,8-C_2B_9H_{10})_2]$ $CH_2Cl_2$ (1) and $[Ag_2({\mu}-Cl)_2(1,2-(P^iPr_2)_2-1,2-C_2B_{10}H_{10})_2]$ (2) have been synthesized and characterized by elemental analysis, 1H and 13C NMR spectroscopy and X-ray structure determination. The X-ray structure analyses revealed that the carborane diphosphine ligand was degraded from closo-1,2-$(PPh_2)_2-1,2-C_2B_{10}H_{10}$ to nido-[$7,8-(PPh_2)_2-7,8-C_2B_9H_{10}]^-$ in complex 1, while the closo nature of the starting ligand $1,2-(P^iPr_2)_2-1,2-C_2B_{10}H_{10}$ was retained in complex 2. In either of the two complexes, the carborane diphosphine ligand was coordinated bidentately to the Hg(II) or Ag(I) center through its two phosphorus atoms, therefore forming a five-member cheating ring between the carborane ligand and the metal center. The coordination geometry of the metal atom is distorted tetrahedron formed by $P_4$ unit in complex 1 and $P_2Cl_2$ unit in complex 2, respectively.