• Title/Summary/Keyword: Complex Communication

Search Result 1,611, Processing Time 0.024 seconds

Development of control system for complex microbial incubator (복합 미생물 배양기의 제어시스템 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.122-126
    • /
    • 2023
  • In this paper, a control system for a complex microbial incubator was proposed. The proposed control system consists of a control unit, a communication unit, a power supply unit, and a control system of the complex microbial incubator. The controller of the complex microbial incubator is designed and manufactured to convert analog signals and digital signals, and control signals of sensors such as displays using LCD panels, water level sensors, temperature sensors, and pH concentration sensors. The water level sensor used is designed and manufactured to enable accurate water level measurement by using the IR laser method with excellent linearity in order to solve the problem that existing water level sensors are difficult to measure due to foreign substances such as bubbles. The temperature sensor is designed and used so that it has high accuracy and no cumulative resistance error by measuring using the thermal resistance principle. The communication unit consists of two LAN ports and one RS-232 port, and is designed and manufactured to transmit signals such as LCD panel, PCT panel, and load cell controller used in the complex microbial incubator to the control unit. The power supply unit is designed and manufactured to supply power by configuring it with three voltage supply terminals such as 24V, 12V and 5V so that the control unit and communication unit can operate smoothly. The control system of the complex microbial incubator uses PLC to control sensor values such as pH concentration sensor, temperature sensor, and water level sensor, and the operation of circulation pump, circulation valve, rotary pump, and inverter load cell used for cultivation. In order to evaluate the performance of the control system of the proposed complex microbial incubator, the result of the experiment conducted by the accredited certification body showed that the range of water level measurement sensitivity was -0.41mm~1.59mm, and the range of change in water temperature was ±0.41℃, which is currently commercially available. It was confirmed that the product operates with better performance than the performance of the products. Therefore, the effectiveness of the control system of the complex microbial incubator proposed in this paper was demonstrated.

Comparative Analysis of the Design Elements for Public Space in Compact City type Multi-Use Complex - Focused on the Central City, COEX and Western Dome Facility - (디자인 계획요소로 본 컴팩트 시티형 복합용도시설의 공공공간 - 센트럴 시티, 코엑스, 웨스턴돔의 비교연구를 중심으로 -)

  • Kim, Sun-Young
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.2
    • /
    • pp.126-135
    • /
    • 2010
  • As public space such as plaza and square in the compact city type multi-use complex is a social public space that various communication and cultural exchange take places in city environment. The purpose of this study is to analyse and categorize the design elements as a valuation basis for the public space in the compact city type multi-use complex. The scope of contents of this study is focused on the Central City, COEX and Western Dome facilities in Korea. This study review based on the previous studies and statistical analysis about questionnaires obtained from 131 users of three facilities were conducted for this study. The results of the survey as follows accessibility, comfort, exchange were extracted as the aspects for evaluation for functional activity and connection, openness, hierarchy were extracted as the aspects for evaluation for space formation. The K facility's priority aspect is the accessibility and the S and the W facilities' are the openness.

Polynomial Approximation Approach to ECG Analysis and Tele-monitoring (다항식 근사를 이용한 심전도 분석 및 원격 모니터링)

  • Yu, Kee-Ho;Jeong, Gu-Young;Jung, Sung-Nam;No, Tae-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.42-47
    • /
    • 2001
  • Analyzing the ECG signal, we can find heart disease, for example, arrhythmia and myocardial infarction, etc. Particularly, detecting arrhythmia is more important, because serious arrhythmia can take away the life from patients within ten minutes. In this paper, we would like to introduce the signal processing for ECG analysis and the device made for wireless communication of ECG data. In the signal processing, the wavelet transform decomposes the ECG signal into high and low frequency components using wavelet function. Recomposing the high frequency bands including QRS complex, we can detect QRS complex and eliminate the noise from the original ECG signal. To recognize the ECG signal pattern, we adopted the polynomial approximation partially and statistical method. The ECG signal is divided into small parts based on QRS complex, and then, each part is approximated to the polynomials. Comparing the approximated ECG pattern with the database, we can detect and classify the heart disease. The ECG detection device consists of amplifier, filters, A/D converter and RF module. After amplification and filtering, the ECG signal is fed through the A/D converter to be digitalized. The digital ECG data is transmitted to the personal computer through the RF transceiver module and serial port.

  • PDF

Congenital Heart Disease: a Pictorial Illustration of Putting Segmental Approach into Practice

  • Yeung, Tse Hang;Park, Eun-Ah;Lee, Ying Cheong;Yoo, Jin Young;Lui, Choi Yu
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.4
    • /
    • pp.205-211
    • /
    • 2015
  • The human heart is a complex organ in which many complicated congenital defects may happen and some of them require surgical intervention. Due to the vast complexity of varied anatomical presentations, establishing an accurate and consistent nomenclature system is utmost important to facilitate effective communication among pediatric cardiologists, cardiothoracic surgeons and radiologists. The Van Praagh segmental approach to the complex congenital heart disease (CHD) was developed in the 1960s and has been used widely as the language for describing complex anatomy of CHD over the decades. It utilizes a systematic and sequential method to describe the cardiac segments and connections which in turn allows accurate, comprehensive and unambiguous description of CHD. It can also be applied to multiple imaging modalities such as echocardiogram, cardiac CT and MRI. The Van Praagh notation demonstrates a group of three letters, with each letter representative for a key embryologic region of cardiac anatomy: the atria, ventricles and great vessels. By using a 3-steps approach, we can evaluate complex CHD precisely and have no difficulties in communicating with other medial colleague. This pictorial essay revisits the logical steps of segmental approach, followed by a pictorial illustration of its application.

Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System (지적보전시스템의 실시간 다중고장진단 기법 개발)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

Information-based Smart Construction Management of High Rise Building Under the Complex Surrounding Environment in City Core Area

  • Liang, Haoqing;Li, Jian;Song, Weiqing
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2021
  • With the development of urbanization, the increasing of buildings density in urban core areas result in the complexity of construction environment. High-rise landmark building is always preferred in the construction of urban core areas. Super high-rise buildings construction are facing construction management difficulties due to the complex working conditions and enormous building system, especially with the complex surrounding environment of the urban core area, the construction management of super high-rise buildings in the area requires higher, refined and detailed standard. Based on a super high-rise project in a core area of Shanghai which has 370 m building height and 772,643 m2 building area, with complex surrounding environment, narrow construction site and many super-high-altitude crossing works. With the application of BIM technology, the Internet of Things, the LAN communication and other various intelligent mechanical equipment, information management systems, the efficiency and refinement of construction management are improved, ensuring the smooth implementation of the project while effectively controlling the impact on the surrounding environment.

The Study on Damaged Hanbuk Mountain Range in Gyeonggi-Do (경기도 한북정맥 훼손유형 연구)

  • Seo, Jung-Young;Lee, Yang-Ju
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.4
    • /
    • pp.65-74
    • /
    • 2010
  • This study is for Hanbuk Mountain Range within Gyeonggi province which is to propose the conservation plan by each damage pattern through site survey of the mountain range. The damage patterns are classified by siding, pointing and lining. The total damaged area is 103 areas: The siding pattern is damaged by developing farmland, mineral and quarry mining, dam, large scale development complex and cemetery park; The pointing pattern is including the development of road, transmission tower and way and mountaineering trail; The construction of electricity and communication facility, military facility, mobile communication station, heliport and shelter. The damages by developing road and large scale development complex are the most cause, and military facility, dam and reservoir, and residential area are the main causes, respectively. One of the compromised situation Hanbuk-Mountain Range usage as per section 7 section (18.45%), 12 section (18.45%) is the largest number of compromised has been surveyed, undermine the situation if you look at the usage by the road 25 locations (24.22%), military facilities and dam and reservoir to undermine this 11 established respectively (10.68%) were the most undermine. Therefore, this research propose the conservation plan as follow: first, need to understand, educate and publicize on Hanbuk-Mounatin Range; second, manage through the regulations and ordinance of Gyeonggi province; third build and expand the law for protecting Baekdu-Great Mountain Range.

Development of IoT based Real-Time Complex Sensor Board for Managing Air Quality in Buildings

  • Park, Taejoon;Cha, Jaesang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.75-82
    • /
    • 2018
  • Efforts to reduce damages from micro dust and harmful gases in life have been led by national or local governments, and information on air quality has been provided along with real-time weather forecast through TV and internet. It is not enough to provide information on the individual indoor space consumed. So in this paper, we propose a IoT-based Real-Time Air Quality Sensing Board Corresponding Fine Particle for Air Quality Management in Buildings. Proposed board is easy to install and can be placed in the right place. In the proposed board, the air quality (level of pollution level) in the indoor space (inside the building) is easy and it is possible to recognize the changed indoor air pollution situation and provide countermeasures. According to the advantages of proposed system, it is possible to provide useful information by linking information about the overall indoor space where at least one representative point is located. In this paper, we compare the performance of the proposed board with the existing air quality measurement equipment.

Accurate Closed-Form Green′s Function for the Analysis of coplanar Waveguides (코플래너 도파로 해석을 위한 정확한 Closed-Form 그린함수)

  • Gang, Yeon-Deok;Lee, Taek-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.11
    • /
    • pp.23-31
    • /
    • 2000
  • In the layered medium, infinite Sommerfeld integral must be evaluated to calculate a space domain Green's function. The complex image method and the two-level method provide rapid calculation and accurate solutions in the near-field region. However, in the intermediate and far-field region, the solutions are inaccurate due to the deformation of the sampling contour. In this paper, we propose a method to calculate an accurate closed-form Green's function for coplanar structure by sampling data on the real axis.

  • PDF

Context-aware Video Surveillance System

  • An, Tae-Ki;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.115-123
    • /
    • 2012
  • A video analysis system used to detect events in video streams generally has several processes, including object detection, object trajectories analysis, and recognition of the trajectories by comparison with an a priori trained model. However, these processes do not work well in a complex environment that has many occlusions, mirror effects, and/or shadow effects. We propose a new approach to a context-aware video surveillance system to detect predefined contexts in video streams. The proposed system consists of two modules: a feature extractor and a context recognizer. The feature extractor calculates the moving energy that represents the amount of moving objects in a video stream and the stationary energy that represents the amount of still objects in a video stream. We represent situations and events as motion changes and stationary energy in video streams. The context recognizer determines whether predefined contexts are included in video streams using the extracted moving and stationary energies from a feature extractor. To train each context model and recognize predefined contexts in video streams, we propose and use a new ensemble classifier based on the AdaBoost algorithm, DAdaBoost, which is one of the most famous ensemble classifier algorithms. Our proposed approach is expected to be a robust method in more complex environments that have a mirror effect and/or a shadow effect.