• 제목/요약/키워드: Complete genome sequence

검색결과 317건 처리시간 0.03초

Identification and Characterization of a Bacteriocin from the Newly Isolated Bacillus subtilis HD15 with Inhibitory Effects against Bacillus cereus

  • Sung Wook Hong;Jong-Hui Kim;Hyun A Cha;Kun Sub Chung;Hyo Ju Bae;Won Seo Park;Jun-Sang Ham;Beom-Young Park;Mi-Hwa Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권11호
    • /
    • pp.1462-1470
    • /
    • 2022
  • Natural antimicrobial substances are needed as alternatives to synthetic antimicrobials to protect against foodborne pathogens. In this study, a bacteriocin-producing bacterium, Bacillus subtilis HD15, was isolated from doenjang, a traditional Korean fermented soybean paste. We sequenced the complete genome of B. subtilis HD15. This genome size was 4,173,431 bp with a G + C content of of 43.58%, 4,305 genes, and 4,222 protein-coding genes with predicted functions, including a subtilosin A gene cluster. The bacteriocin was purified by ammonium sulfate precipitation, Diethylaminoethanol-Sepharose chromatography, and Sephacryl gel filtration, with 12.4-fold purification and 26.2% yield, respectively. The purified protein had a molecular weight of 3.6 kDa. The N-terminal amino acid sequence showed the highest similarity to Bacillus subtilis 168 subtilosin A (78%) but only 68% similarity to B. tequilensis subtilosin proteins, indicating that the antimicrobial substance isolated from B. subtilis HD15 is a novel bacteriocin related to subtilosin A. The purified protein from B. subtilis HD15 exhibited high antimicrobial activity against Listeria monocytogenes and Bacillus cereus. It showed stable activity in the range 0-70℃ and pH 2-10 and was completely inhibited by protease, proteinase K, and pronase E treatment, suggesting that it is a proteinaceous substance. These findings support the potential industrial applications of the novel bacteriocin purified from B. subtilis HD15.

Construction of an Agroinfectious Clone of a Korean Isolate of Sweet Potato Symptomless Virus 1 and Comparison of Its Infectivity According to Agrobacterium tumefaciens Strains in Nicotiana benthamiana

  • Phuong T. Ho;Hee-Seong Byun;Thuy T. B. Vo;Aamir Lal;Sukchan Lee;Eui-Joon Kil
    • The Plant Pathology Journal
    • /
    • 제39권3호
    • /
    • pp.255-264
    • /
    • 2023
  • Sweet potato symptomless virus 1 (SPSMV-1) is a single-stranded circular DNA virus, belonging to the genus Mastrevirus (family Geminiviridae) that was first identified on sweet potato plants in South Korea in 2012. Although SPSMV-1 does not induce distinct symptoms in sweet potato plants, its co-infection with different sweet potato viruses is highly prevalent, and thus threatens sweet potato production in South Korea. In this study, the complete genome sequence of a Korean isolate of SPSMV-1 was obtained by Sanger sequencing of polymerase chain reaction (PCR) amplicons from sweet potato plants collected in the field (Suwon). An infectious clone of SPSMV-1 (1.1-mer) was constructed, cloned into the plant expression vector pCAMBIA1303, and agro-inoculated into Nicotiana benthamiana using three Agrobacterium tumefaciens strains (GV3101, LBA4404, and EHA105). Although no visual differences were observed between the mock and infected groups, SPSMV-1 accumulation was detected in the roots, stems, and newly produced leaves through PCR. The A. tumefaciens strain LBA4404 was the most effective at transferring the SPSMV-1 genome to N. benthamiana. We confirmed the viral replication in N. benthamiana samples through strand-specific amplification using virion-sense- and complementary-sense-specific primer sets.

COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19

  • Shama Mujawar;Gayatri Patil;Srushti Suthar;Tanuja Shendkar;Vaishnavi Gangadhar
    • Genomics & Informatics
    • /
    • 제21권2호
    • /
    • pp.16.1-16.14
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a viral infection produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus epidemic, which was declared a global pandemic in March 2020. The World Health Organization has recorded around 43.3 billion cases and 59.4 million casualties to date, posing a severe threat to global health. Severe COVID-19 indicates viral pneumonia caused by the SARS-CoV-2 infections, which can induce fatal consequences, including acute respiratory distress syndrome (ARDS). The purpose of this research is to better understand the COVID-19 and ARDS pathways, as well as to find targeted single nucleotide polymorphism. To accomplish this, we retrieved over 100 patients' samples from the Sequence Read Archive, National Center for Biotechnology Information. These sequences were processed through the Galaxy server next generation sequencing pipeline for variant analysis and then visualized in the Integrative Genomics Viewer, and performed statistical analysis using t-tests and Bonferroni correction, where six major genes were identified as DNAH7, CLUAP1, PPA2, PAPSS1, TLR4, and IFITM3. Furthermore, a complete understanding of the genomes of COVID-19-related ARDS will aid in the early identification and treatment of target proteins. Finally, the discovery of novel therapeutics based on discovered proteins can assist to slow the progression of ARDS and lower fatality rates.

Complete Mitochondrial Genome Sequences of Chinese Indigenous Sheep with Different Tail Types and an Analysis of Phylogenetic Evolution in Domestic Sheep

  • Fan, Hongying;Zhao, Fuping;Zhu, Caiye;Li, Fadi;Liu, Jidong;Zhang, Li;Wei, Caihong;Du, Lixin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권5호
    • /
    • pp.631-639
    • /
    • 2016
  • China has a long history of sheep (Ovis aries [O. aries]) breeding and an abundance of sheep genetic resources. Knowledge of the complete O. aries mitogenome should facilitate the study of the evolutionary history of the species. Therefore, the complete mitogenome of O. aries was sequenced and annotated. In order to characterize the mitogenomes of 3 Chinese sheep breeds (Altay sheep [AL], Shandong large-tailed sheep [SD], and small-tailed Hulun Buir sheep [sHL]), 19 sets of primers were employed to amplify contiguous, overlapping segments of the complete mitochondrial DNA (mtDNA) sequence of each breed. The sizes of the complete mitochondrial genomes of the sHL, AL, and SD breeds were 16,617 bp, 16,613 bp, and 16,613 bp, respectively. The mitochondrial genomes were deposited in the GenBank database with accession numbers KP702285 (AL sheep), KP981378 (SD sheep), and KP981380 (sHL sheep) respectively. The organization of the 3 analyzed sheep mitochondrial genomes was similar, with each consisting of 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA), 13 protein-coding genes, and 1 control region (D-loop). The NADH dehydrogenase subunit 6 (ND6) and 8 tRNA genes were encoded on the light strand, whereas the rest of the mitochondrial genes were encoded on the heavy strand. The nucleotide skewness of the coding strands of the 3 analyzed mitogenomes was biased toward A and T. We constructed a phylogenetic tree using the complete mitogenomes of each type of sheep to allow us to understand the genetic relationships between Chinese breeds of O. aries and those developed and utilized in other countries. Our findings provide important information regarding the O. aries mitogenome and the evolutionary history of O. aries inside and outside China. In addition, our results provide a foundation for further exploration of the taxonomic status of O. aries.

건강한 한국인 분변으로부터 분리된 Lachnospiraceae bacterium KGMB03038 (=KCTC 15821) 균주의 유전체 염기서열 초안 (Complete genome sequence of Lachnospiraceae bacterium KGMB03038 (=KCTC 15821) isolated from healthy Korean feces)

  • 김지선;강세원;한국일;이근철;엄미경;서민국;김한솔;이주혁;박승환;박잠언;오병섭;유승엽;최승현;유승우;이동호;윤혁;김병용;이제희;이정숙
    • 미생물학회지
    • /
    • 제55권3호
    • /
    • pp.289-292
    • /
    • 2019
  • Lachnospiraceae bacterium KGMB03038 (=KCTC 15821)은 건강한 한국인의 대변 시료로부터 분리된 Lachnospiraceae과, Clostridia 강, Firmicutes 문에 속하는 신속 균주이다. 본 연구에서는 PacBio Sequel 플랫폼을 이용하여 KGMB03038 균주의 유전체를 해독하고 분석하였으며 그 결과, 47.8% G + C 함량을 가진 3,334,474 bp 길이의 완전한 하나의 유전체 컨티그를 얻었다. 이 유전체는 3,099개의 단백질 암호화 유전자와 12개의 rRNA 유전자, 54개의 rRNA 유전자, 그리고 4개의 ncRNA 유전자를 포함하고 있다. 이 유전체 분석 결과, KGMB 03038 균주가 탄수화물의 가수화와 아미노산의 생합성에 관련되어 있는 중요 유전자들을 가지고 있음을 확인하였다.

An Orthologous Group Clustering Technique based on the Grid Computing

  • Oh, J.S.;Kim, T.K.;Kim, S.S.;Kwon, H.R.;Kim, Y.C.;Yoo, J.S.;Cho, W.S.
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.72-77
    • /
    • 2005
  • Orthologs are genes having the same function across different species that specialize from a single gene in the last common ancestor of these species. Orthologous groups are useful in the genome annotation, studies on gene evolution, and comparative genomics. However, the construction of an orthologous group is difficult to automate and it takes so much time. It is also hard to guarantee the accuracy of the constructed orthologous groups. We propose a system to construct orthologous groups on many genomes automatically and rapidly. We utilize the grid computing to reduce the sequence alignment time, and we use clustering algorithm in the application of database to automate whole processes. We have generated orthologous groups for 20 complete prokaryotes genomes just in a day because of the grid computing. Furthermore, new genomes can be accommodated easily by the clustering algorithm and grid computing. We compared the generated orthologous groups with COGs (Clusters of orthologous Group of proteins) and KO (KEGG Ortholog). The comparison shows about 85 percent similarity compared with previous well-known orthologous databases.

  • PDF

cDNA Cloning and Overexpression of an Isoperoxidase Gene from Korean-Radish, Raphanus sativus L.

  • Park, Jong-Hoon;Kim, Soung-Soo
    • BMB Reports
    • /
    • 제29권2호
    • /
    • pp.137-141
    • /
    • 1996
  • A partial cDNA encoding a Korean radish isoperoxidase was obtained from a cDNA library prepared from 9 day old radish root. In order to obtain Korean radish isoperoxidase cDNA, 5' RACE (rapid amplification cDNA end) PCR was performed and a cDNA (prxK1) encoding a complete structural protein was obtained by RT (reverse transcription)-PCR. Sequence analysis revealed that the length of the cDNA was 945 base pairs, and that of the mRNA transcript was ca. 1.6 kb. The deduced amino acid of the protein were composed of 315 amino acid residues and the protein was 92% homologous to turnip peroxidase, and 46% to 50% homologous to other known peroxidases. The 945 bp cDNA encoding Korean radish isoperoxidase was overexpressed in Escherichia coli up to approximately 9% of total cellular protein. The recombinant fusion protein exhibited 43 kDa on SDS-PAGE analysis and the activity level of the recombinant nonglycosylated protein was two fold higher in IPTG induced cell extracts than that of uninduced ones.

  • PDF

Cloning of the Fibroin Gene from the Oak Silkworm, Antheraea yamamai and Its Complete Sequence

  • Hwang, Jae-Sam;Lee, Jin-Sung;Goo, Tae-Woo;Yun, Eun-Young;Choi, Kwang-Ho;Lee, Kwang-Sik;Kim, Yong-Sung;Jin, Byung-Rae;Lee, Sang-Mong;Kim, Keun-Young;Kang, Seok-Woo;Suh, Dong-Sang
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2002년도 Join Meetings of Korean Society of Sericultural Science and Japanse Society of Sericultural Science
    • /
    • pp.72-72
    • /
    • 2002
  • No Abstract, See Full Text

  • PDF

퍼지 추론기법을 이용한 DNA 염기 서열의 단편결합 (Fragment Combination From DNA Sequence Data Using Fuzzy Reasoning Method)

  • 김광백;박현정
    • 한국정보통신학회논문지
    • /
    • 제10권12호
    • /
    • pp.2329-2334
    • /
    • 2006
  • 본 논문에서는 기존의 conting 구성 프로그램의 단점인 단편들 간의 결합 실패를 보완하는 알고리즘을 제안하였다. 제안된 방법은 매우 긴 DNA의 염기 서열을 자동 서열 분석기로 한번에 분석 가능한 약 700개의 단편들을 한 주형으로 만들어 PCR 방법으로 클론 3을 생성 후, $600\sim700$개의 길이로 단편화하여 기준 주형과 비교하여 일치율을 계산한다. 이때 Compute Agreement 알고리즘을 이용하여 일치율을 계산하는 시간을 단축시킨다. 계산된 단편 쌍들의 중첩 정도를 기준으로 주형마다 2개의 결합 후보 단편을 추출하여 추출된 각 단편들의 일치율과 각 DNA 염기의 A,G,C,T 소속도 및 각 A,G,C,T 이 전 빈도수를 퍼지 추론 규칙을 이용하여 결합 여부를 판단한다. 본 논문에서는 결정된 최 적의 비교 단편을 결합하고, 더 이상 단편이 없을 때까지 반복하여 서열 결합을 완성한다. 실험을 위해 완성된 단백질 지놈인 'Synechocystis PCC6803'을 각각 1만개, 10만개씩 추출하여 $600{\sim}700$개의 길이를 가진 단편을 생성하였으며, 이 단편을 임 의의 mutation을 유발하여 실험한 결과, FAP 프로그램보다 속도가 줄어들었으며, conting 구성 프로그램의 단점 인 결합 실패가 발생하지 않았다.