• Title/Summary/Keyword: Complete Binary Tree Search

Search Result 3, Processing Time 0.017 seconds

A Method to Expand a Complete Binary Tree using Greedy Method and Pruning in Sudoku Problems (스도쿠 풀이에서 욕심쟁이 기법과 가지치기를 이용한 완전이진트리 생성 기법)

  • Kim, Tai Suk;Kim, Jong Soo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.4
    • /
    • pp.696-703
    • /
    • 2017
  • In this paper, we show how to design based on solving Sudoku problem that is one of the NP-complete problems like Go. We show how to use greedy method which can minimize depth based on tree expansion and how to apply heuristic algorithm for pruning unnecessary branches. As a result of measuring the performance of the proposed method for solving of Sudoku problems, this method can reduce the number of function call required for solving compared with the method of heuristic algorithm or recursive method, also this method is able to reduce the 46~64 depth rather than simply expanding the tree and is able to pruning unnecessary branches. Therefore, we could see that it can reduce the number of leaf nodes required for the calculation to 6 to 34.

Maximization of Path Reliabilities in Overlay Multicast Trees for Realtime Internet Service (실시간 인터넷 서비스를 위한 오브레이 말티케스트 트리의 패스 신뢰성 최대화)

  • Lee, Jung-H.;Lee, Chae-Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.103-114
    • /
    • 2008
  • Overlay Multicast is a promising approach to overcome the implementation problem of IP multicast. Real time services like Internet broadcasting are provided by the overlay multicast technology due to the complex nature and high cost of IP multicast. To reduce frequent updates of multicast members and to support real time service without delay, we suggest a reliable overlay multicast tree based on members' sojourn probabilities. Path reliabilities from a source to member nodes are considered to maximize the reliability of an overlay multicast tree. The problem is formulated as a binary integer programming with degree and delay bounds. A tabu search heuristic is developed to solve the NP-complete problem. Outstanding results are obtained which is comparable to the optimal solution and applicable in real time.

Image Coding Using the Self-Organizing Map of Multiple Shell Hypercube Struture (다중쉘 하이퍼큐브 구조를 갖는 코드북을 이용한 벡터 양자화 기법)

  • 김영근;라정범
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.153-162
    • /
    • 1995
  • When vector quantization is used in low rate image coding (e.g., R<0.5), the primary problem is the tremendous computational complexity which is required to search the whole codebook to find the closest codevector to an input vector. Since the number of code vectors in a vector quantizer is given by an exponential function of the dimension. i.e., L=2$^{nR}$ where Rn. To alleviate this problem, a multiple shell structure of hypercube feature maps (MSSHFM) is proposed. A binary HFM of k-dimension is composed of nodes at hypercube vertices and a multiple shell architecture is constructed by surrounding the k-dimensional hfm with a (k+1)-dimensional HFM. Such a multiple shell construction of nodes inherently has a complete tree structure in it and an efficient partial search scheme can be applied with drastically reduced computational complexity, computer simulations of still image coding were conducted and the validity of the proposed method has been verified.

  • PDF