• 제목/요약/키워드: Complementary Forage System

검색결과 3건 처리시간 0.017초

Modelling Pasture-based Automatic Milking System Herds: The Impact of Large Herd on Milk Yield and Economics

  • Islam, M.R.;Clark, C.E.F.;Garcia, S.C.;Kerrisk, K.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권7호
    • /
    • pp.1044-1052
    • /
    • 2015
  • The aim of this modelling study was to investigate the effect of large herd size (and land areas) on walking distances and milking interval (MI), and their impact on milk yield and economic penalties when 50% of the total diets were provided from home grown feed either as pasture or grazeable complementary forage rotation (CFR) in an automatic milking system (AMS). Twelve scenarios consisting of 3 AMS herds (400, 600, 800 cows), 2 levels of pasture utilisation (current AMS utilisation of 15.0 t dry matter [DM]/ha, termed as 'moderate'; optimum pasture utilisation of 19.7 t DM/ha, termed as 'high') and 2 rates of incorporation of grazeable complementary forage system (CFS: 0, 30%; CFS = 65% farm is CFR and 35% of farm is pasture) were investigated. Walking distances, energy loss due to walking, MI, reduction in milk yield and income loss were calculated for each treatment based on information available in the literature. With moderate pasture utilisation and 0% CFR, increasing the herd size from 400 to 800 cows resulted in an increase in total walking distances between the parlour and the paddock from 3.5 to 6.3 km. Consequently, MI increased from 15.2 to 16.4 h with increased herd size from 400 to 800 cows. High pasture utilisation (allowing for an increased stocking density) reduced the total walking distances up to 1 km, thus reduced the MI by up to 0.5 h compared to the moderate pasture, 800 cow herd combination. The high pasture utilisation combined with 30% of the farm in CFR in the farm reduced the total walking distances by up to 1.7 km and MI by up to 0.8 h compared to the moderate pasture and 800 cow herd combination. For moderate pasture utilisation, increasing the herd size from 400 to 800 cows resulted in more dramatic milk yield penalty as yield increasing from c.f. 2.6 and 5.1 kg/cow/d respectively, which incurred a loss of up to $AU 1.9/cow/d. Milk yield losses of 0.61 kg and 0.25 kg for every km increase in total walking distance (voluntary return trip from parlour to paddock) and every one hour increase in MI, respectively. The high pasture utilisation combined with 30% of the farm in CFR in the farm increased milk yield by up to 1.5 kg/cow/d, thereby reducing loss by up to $0.5/cow/d (c.f. the moderate pasture and 800 cow herd scenario). Thus, it was concluded that the successful integration of grazeable CFS with pasture has the potential to improve financial performance compared to the pasture only, large herd, AMS.

Food-Feed Systems in Asia - Review -

  • Devendra, C.;Sevilla, C.;Pezo, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권5호
    • /
    • pp.733-745
    • /
    • 2001
  • This review paper discusses the relevance and potential importance of food-feed systems in Asian agricultural systems, and in particular the role and contribution of legumes to these systems. A food-feed system is one that maintains, if not increases, the yield of food crops, sustains soil fertility, and provides dietary nutrients for animals. It involves a cropping pattern within which the feed crop has many beneficial effects without competing for land, soil nutrients and water with the food crops. The agricultural environment is described with reference to the priority agro-ecological zones and prevailing mixed farming systems in Asia. Within these systems, animal production is severely hampered by critical feed shortages which can however, be alleviated by the integration of suitable leguminous forages into the cropping systems. The review also focuses on the role and potential importance of leguminous forages in terms of biodiversity, their uses in farming systems, beneficial effects on animal performance, and draws attention to six case studies in different countries that clearly demonstrate many benefits of developing such food-feed systems. Considerable opportunities exist for widening the use of forage legumes in the development of systems with several complementary advantages (e.g. fenceline, cover crops, fodder banks, forage source and erosion control) to improve the development of sustainable crop-animal systems in Asia.

Modelling Pasture-based Automatic Milking System Herds: System Fitness of Grazeable Home-grown Forages, Land Areas and Walking Distances

  • Islam, M.R.;Garcia, S.C.;Clark, C.E.F.;Kerrisk, K.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권6호
    • /
    • pp.903-910
    • /
    • 2015
  • To maintain a predominantly pasture-based system, the large herd milked by automatic milking rotary would be required to walk significant distances. Walking distances of greater than 1-km are associated with an increased incidence of undesirably long milking intervals and reduced milk yield. Complementary forages can be incorporated into pasture-based systems to lift total home grown feed in a given area, thus potentially 'concentrating' feed closer to the dairy. The aim of this modelling study was to investigate the total land area required and associated walking distance for large automatic milking system (AMS) herds when incorporating complementary forage rotations (CFR) into the system. Thirty-six scenarios consisting of 3 AMS herds (400, 600, 800 cows), 2 levels of pasture utilisation (current AMS utilisation of 15.0 t dry matter [DM]/ha, termed as moderate; optimum pasture utilisation of 19.7 t DM/ha, termed as high) and 6 rates of replacement of each of these pastures by grazeable CFR (0%, 10%, 20%, 30%, 40%, 50%) were investigated. Results showed that AMS cows were required to walk greater than 1-km when the farm area was greater than 86 ha. Insufficient pasture could be produced within a 1 km distance (i.e. 86 ha land) with home-grown feed (HGF) providing 43%, 29%, and 22% of the metabolisable energy (ME) required by 400, 600, and 800 cows, respectively from pastures. Introduction of pasture (moderate): CFR in AMS at a ratio of 80:20 can feed a 400 cow AMS herd, and can supply 42% and 31% of the ME requirements for 600 and 800 cows, respectively with pasture (moderate): CFR at 50:50 levels. In contrast to moderate pasture, 400 cows can be managed on high pasture utilisation (provided 57% of the total ME requirements). However, similar to the scenarios conducted with moderate pasture, there was insufficient feed produced within 1-km distance of the dairy for 600 or 800 cows. An 800 cow herd required 140 and 130 ha on moderate and high pasture-based AMS system, respectively with the introduction of pasture: CFR at a ratio of 50:50. Given the impact of increasing land area past 86 ha on walking distance, cow numbers could be increased by purchasing feed from off the milking platform and/or using the land outside 1-km distance for conserved feed. However, this warrants further investigations into risk analyses of different management options including development of an innovative system to manage large herds in an AMS farming system.