• Title/Summary/Keyword: Complaint data about endangered wildlife

Search Result 1, Processing Time 0.013 seconds

A Text Mining Study on Endangered Wildlife Complaints - Discovery of Key Issues through LDA Topic Modeling and Network Analysis - (멸종위기 야생생물 민원 텍스트 마이닝 연구 - LDA 토픽 모델링과 네트워크 분석을 통한 주요 이슈 발굴 -)

  • Kim, Na-Yeong;Nam, Hee-Jung;Park, Yong-Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.205-220
    • /
    • 2023
  • This study aimed to analyze the needs and interests of the public on endangered wildlife using complaint big data. We collected 1,203 complaints and their corresponding text data on endangered wildlife, pre-processed them, and constructed a document-term matrix for 1,739 text data. We performed LDA (Latent Dirichlet Allocation) topic modeling and network analysis. The results revealed that the complaints on endangered wildlife peaked in June-August, and the interest shifted from insects to various endangered wildlife in the living area, such as mammals, birds, and amphibians. In addition, the complaints on endangered wildlife could be categorized into 8 topics and 5 clusters, such as discovery report, habitat protection and response request, information inquiry, investigation and action request, and consultation request. The co-occurrence network analysis for each topic showed that the keywords reflecting the call center reporting procedure, such as photo, send, and take, had high centrality in common, and other keywords such as dung beetle, know, absence and think played an important role in the network. Through this analysis, we identified the main keywords and their relationships within each topic and derived the main issues for each topic. This study confirmed the increasing and diversifying public interest and complaints on endangered wildlife and highlighted the need for professional response. We also suggested developing and extending participatory conservation plans that align with the public's preferences and demands. This study demonstrated the feasibility of using complaint big data on endangered wildlife and its implications for policy decision-making and public promotion on endangered wildlife.