• Title/Summary/Keyword: Competitive Adsorption

Search Result 111, Processing Time 0.019 seconds

Adsorption of 2-Cyanonaphthalene on Silver Sol Investigated by Raman Spectroscopy$^\dag$

  • Park, Seong Hyeon;Lee, Eun A;Jang, Du Jeon;Kim, Myeong Su;Kim, Gwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.130-134
    • /
    • 1995
  • Surface-enhanced Raman (SER) scattering of 2-cyanonaphthalene (2-CN) has been investigated in silver sol. Addition of halide ions was needed to obtain authentic SER spectra of the molecule. The SER spectra thus obtained exhibited a slight but noticeable dependence on the kind of halide ions used. This halide-dependent spectral variation was attributed to the orientational change of molecule on silver sol surface. A possible mechanism for such an orientational change is proposed in terms of the competitive adsorption of 2-CN with halide ions on the so-called halide-specific sites.

Treatment of Laboratory Wastewater Using Waste Egg Shells (폐달걀껍질을 이용한 실험실폐수처리)

  • 김은호;정유진;김형석
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.124-130
    • /
    • 1998
  • This study was to examine the utilization of waste egg snells for removal of heavy metals in laboratory wastewater. It was estimated that pH increasing formed heavy metals into a hydroxide and then settled to remove them. Removal rate of heavy metals were increased as increased dosage, low adsorbate concentration and passed reaction time. Average adsorption volumes of Cr, Cu, Mn and Pb per g were about 1.21 mg, 1.1 mg, 0.96 mg and 1.04 mg, respectively. If we reflected the adsorption capacity(k) and adsorption intensity(1/n) of Freundlich isotherm, we couldn't consider waste egg shells as a good adsorbent. It seemed that heavy metals contained in complex wastewater was removed to be influenced by inital pH, solubilities with passed reaction rime and competitive reaction.

  • PDF

Selective Removal of Odorants in Natural Gas by Adsorption on Metal-containing Beta Zeolite Adsorbents (금속함유 베타 제올라이트 흡착제 상에서 LNG가스 내에 부취된 황화합물의 선택적 흡착제거)

  • Oh, Sang-Seung;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.459-466
    • /
    • 2007
  • In this study, H-type beta zeolites (BEA) having various metals were used as the adsorbent for the removal of sulfur containing odorants. The different adsorbents containing single or bimetals were utilized to investigate the performance in the individual adsorption of TBM and THT odorants or in the competitive adsorption between them by using a continuous adsorptive bed system. The result shows that the pure H-type BEA zeolite exhibited the highest adsorption capacity for TBM compound, but the higher amount of THT was removed and adsorbed on a HBEA adsorbent having Fe, Pd metal and ZnO oxide. In the case of bimetal containing adsorbents, Cu-Zn/HBEA and Fe-Mo/HBEA showed a higher adsorption capacity for TBM.

Porosity and Liquid-phase Adsorption Characteristics of Activated Carbons Prepared From Peach Stones by $H_3PO_4$

  • Attia, Amina A.;Girgis, Badie S.;Tawfik, Nady A.F.
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.89-95
    • /
    • 2005
  • Crushed peach stone shells were impregnated with $H_3PO_4$ of increasing concentrations (30-70%) followed by heat treatment at 773 K for 3 h. Produced carbons (ACs) were characterized by $N_2$ adsorption at 77 K using the BET-equation and the ${\alpha}$-method. High surface area microporous ACs were obtained, with enhanced internal pore volume, as function of % $H_3PO_4$. Adsorption isotherms from aqueous solution were determined for methylene blue (MB) and p-nitrophenol (PNP), as representatives for dye and phenolics pollutant molecules. Application of the Langmuir model proved the high limiting capacity towards both solute molecules, MB was uptaken in increasing amounts as function of $H_3PO_4$ concentration and generated porosity. High removal of PNP was almost the same irrespective of porosity characteristics. Competitive adsorption of $H_2O$ molecules on the hydrophilic carbon surface seems to partially reduce the available area to the PNP molecules. Application of the pseudo-second order law described well the fast adsorption (${\leq}$ 120 min) at two initial dye concentrations.

  • PDF

Synthesis of polysulfone beads impregnated with Ca-sepiolite for phosphate removal

  • Hong, Seung-Hee;Lee, Chang-Gu;Jeong, Sanghyun;Park, Seong-Jik
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • Former studies revealed that sepiolite thermally treated at high temperature have high adsorption capacity for phosphate. However, its micron size (75 ㎛) limits its application to water treatment. In this study, we synthesized sepiolite impregnated polysulfone (PSf) beads to separate it easily from an aqueous solution. PSf beads with different sepiolite ratios were synthesized and their efficiencies were compared. The PSf beads with 30% impregnated sepiolite (30SPL-PSf bead) possessed the optimum sepiolite ratio for phosphate removal. Kinetic, equilibrium, and thermodynamic adsorption experiments were performed using the 30SPL-PSf bead. Equilibrium adsorption was achieved in 24 h, and the pseudo-first-order model was suitable for describing the phosphate adsorption at different reaction times. The Langmuir model was appropriate for describing the phosphate adsorption onto the 30SPL-PSf bead, and the maximum adsorption capacity of the 30SPL-PSf bead obtained from the model was 24.48 mg-PO4/g. Enthalpy and entropy increased during the phosphate adsorption onto the 30SPL-PSf bead, and Gibb's free energy at 35 ℃ was negative. An increase in the solution pH from 3 to 11 induced a decrease in the phosphate adsorption amount from 27.30 mg-PO4/g to 21.54 mg-PO4/g. The competitive anion influenced the phosphate adsorption onto the 30SPL-PSf bead was in the order of NO3- > SO42- > HCO3-. The phosphate breakthrough from the column packed with the 30SPL-PSf bead began after ~2000 min, reaching the influent concentration after ~8000 min. The adsorption amounts per unit mass of 30SPL-PSf and removal efficiency were 0.775 mg-PO4/g and 61.6%, respectively. This study demonstrates the adequate performance of 30SPL-PSf beads as a filter for phosphate removal from aqueous solutions.

Adsorption property of heavy metals onto MCM-41 and expanded graphite (MCM-41 및 팽창흑연의 중금속 흡착특성)

  • Lee, Myoung-Eun;Lee, Chae-Young;Kang, Seok-Tae;Kim, Sang-Hyoun;Cho, Yun-Chul;Kim, Soo-Hong;Chung, Jae-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.275-283
    • /
    • 2012
  • MCM-41(Mobil's Composition of Matter-41) and expanded graphite(EG) were investigated as potential adsorbents for heavy metal ions including Pb(II), Cu(II) and Ni(II) in various aqueous chemistries. MCM-41 showed shorter equilibrium times and higher adsorption capacities for all three heavy metal ions compared to expanded graphite. The adsorption of three heavy metal ions was significantly affected by the solution pH due to the competition with $H_{3}O^{+}$ at lower pH and precipitation at neutral or higher pH. Adsorptions of heavy metal ions onto MCM-41 and expanded graphite were successfully described with the pseudo-second-order model. During the competitive adsorption of three heavy metal ions, the selectivity of Pb(II) was highest and almost same selectivity was observed with Cu(II) and Ni(II) when MCM-41 was used as an adsorbent, while the expanded graphite exhibited the highest selectivity to Pb(II), followed by Ni(II) and Cu(II).

Fabrication of Pre-Exfoliated Clay Masterbatch via Exfoliation-Adsorption of Polystyrene Nanobeads

  • Khvan, Svetlana;Kim, Jun-Kyung;Lee, Sang-Soo
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2007
  • The approach studied in the present work produced an exfoliated state of clay layers via confinement of the charged nano-sized polystyrene (PS) beads within the gallery of swollen pristine clay. It was demonstrated that adsorption of the polymer nanobeads dramatically promotes expansion of the clay gallery. A comparative study of incorporation was conducted by employing organo-modified clay along with two different colloid polymer systems: electrostatically stabilized PS nanobeads and cationic monomer-grafted PS nanobeads. The mechanism of adsorption of the monomer-grafted polymer beads onto clay via cationic exchange between the alkyl ammonium group of the polymer nanobeads and the interlayer sodium cation of the layered silicate was verified by using several techniques. As distinct from the polymer nanobeads formed using conventional miniemulsion polymerization method, competitive adsorption of stabilizing surfactant molecules was be prevented by grafting the surface functional groups into the polymer chain, thereby supporting the observed effective adsorption of the polymer beads. The presence of surface functional groups that support the establishment of strong polymer-clay interactions was suggested to improve the compatibility of the clay with the polymer matrix and eventually play a crucial role in the performance of the final nanocomposites.

Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

  • Kim, Dae Ho;Kim, Doo Won;Kim, Bo-Hye;Yang, Kap Seung;Lim, Yong-Kyun;Park, Eun Nam
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.104-108
    • /
    • 2013
  • The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents.

A critical review of fluoride removal from water by using different types of adsorbents

  • Prashant S. Lingayat;Rampravesh K. Rai
    • Advances in environmental research
    • /
    • v.12 no.2
    • /
    • pp.77-93
    • /
    • 2023
  • The water can be contaminated by natural sources or by industrial effluents. One such contaminant is fluoride. Fluoride contamination in the water environment due to natural and artificial activities has been recognized as one of the major problems worldwide. Among the commonly used treatment technologies applied for fluoride removal, the adsorption technique has been explored widely and offers a highly efficient simple and low-cost process for fluoride removal from water. This review paper the recent developments in fluoride removal from surface water by adsorption methods. Studies on fluoride removal from aqueous solutions using various carbon materials are reviewed. Various adsorbents with high fluoride removal capacity have been developed, however, there is still an urgent need to transfer the removal process to an industrial scale. Regeneration studies need to be performed to more extent to recover the adsorbent in field conditions, enhancing the economic feasibility of the process. Based on the review, technical strategies of the adsorption method including the Nano-surface effect, structural memory effect, anti-competitive adsorption and ionic sieve effect can be proposed. The design of adsorbents through these strategies can greatly improve the removal efficiency of fluoride in water and guide the development of new efficient methods for fluoride removal in the future. This paper describes brief discussions on various low-cost adsorbents used for the effective removal of fluoride from water.

Heavy Metal Adsorption of Untreated Barks by Treatment Conditions of Aqueous Solution (용액의 처리조건에 따른 미처리 수피에 의한 중금속 흡착)

  • Paik, Ki-Hyon;Kim, Dong-Ho;Kim, Seung-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.49-56
    • /
    • 2000
  • This study was designed to investigate the adsorption of heavy metal ions by untreated bark according to the treatment conditions of aqueous solution. The effect of temperature and pH of aqueous solution, particle size of bark, addition of light metal ions on the adsorption was examined, and the competition in adsorption among heavy metal ions was also evaluated. te The adsorption ratio of $Cu^{2+}$ and $Zn^{2+}$ increased with increasing themperature of solution from $-5^{\circ}C$ to $10^{\circ}C$ however, it was relatively constant at temperatures between $10^{\circ}C$ and $55^{\circ}C$. The adsorption ratio of $Cr^{6+}$ increased continuously with increasing the temperature of solution. The maximum adsorption ratio of $Cu^{2+}$, $Zn^{2+}$, and $Pb^{2+}$ was noted at pHs ranged 6 to 7; however, the adsorption ratio declined sharply on either sides of the optimum. The adsorption ratio of $Cr^{6+}$ decreased continuously with increasing the pH of solution. The adsorption ratio increased as decreasing the particle size of bark, and there was little differences in adsorption tendency between pine and oak bark. By the addition of $Ca^{2+}$ or $Mg^{2+}$(10~25 ppm), the adsorption ratio of $Cu^{2+}$ and $Zn^{2+}$ increased. An increase of the adsorption ratio was higher in oak bark than in pine bark. However, the adsorption ratio of $Pb^{2+}$ and $Cr^{6+}$ was not affected by the addition of light metal ions. As the mixed solution of 2 or 3 kinds of heavy metal ions($Cu^{2+}$, $Zn^{2+}$, $Pb^{2+}$) was treated with the untreated bark, the adsorption of $Zn^{2+}$ decreased considerably because of the competitive adsorption among heavy metal ions. Also the adsorption of $Cu^{2+}$ was more and less reduced. However the adsorption of $Pb^{2+}$ was not affected by the presence of other heavy metal ions.

  • PDF