• Title/Summary/Keyword: Competitive Adsorption

Search Result 111, Processing Time 0.041 seconds

Competive Adsorption Characteristics of CFW on Cu and Zn (음식물 탄화재의 Cu와 Zn에 대한 경쟁 흡착특성)

  • Han, Jung-Geun;Kim, Dong-Chan;Hong, Ki-Kwon;Yoon, Won-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This paper describes the batch test results for application of CFW(Carbonized Foods Waste), which was produced by the process of recycling waste, in PRB system. It analyzed characteristics for individual adsorption and competitive adsorption of Cu and Zn in heavy metals. In individual adsorption, the Langmuir and Freundlich models are used to predict adsorption equilibrium. The adsorption equilibrium corresponded to the Langmuir's and the maximum adsorption amount of Cu was greater than Zn's. The removal of heavy metal is predicted that Zn was faster than Cu. The reaction rate of Zn based on Pseudo-first-order and Pseudo-second-order was faster than Cu's, and the result of competitive adsorption test confirmed that the adsorption amount of Zn is reduced under similar condition for competitive adsorption rate of Cu and Zn. When Zn solution is mixed in Cu, Cu is adsorbed 86% on CFW. However, the adsorption of Zn is 19% on the contrary condition. Therefore, the removal characteristics of separate heavy metal should be considered for efficient treatment of contaminated ground based on complex heavy metal.

Competitve Interactions of Cadmium with Magnesium in Three Different Soil Constituents (3개의 다른 토양에서의 카드늄과 마그네시움의 경쟁적 상호작용)

  • Doug-Young Chung
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 1996
  • To study the Cd adsorption in the presence of competing ions in soil-solution interphase, three soil samples from the Bt horizon were taken and analyzed for their physical and chemical properties. Adsorption of ethylene glycol monoethyl ether(EGME) and N, were determined to establish the specific surface area of the soils. We attempted to establish a qeneralizing competitive sorption isotherms for soils of entirely different composition of the solid phase, resulting in the routine use as a guidelines for the fate of reactive solute in soil profiles. Many physicochemical factors including competitive adsorption bettween solutes will affect the general adsorption phenomena as shown in a single not only on the soil:solution ratio used, but also on the surface areas of its respective soil samples. This phenomenon was attributed to competition Cd for sorption sites with Mg by different soil constituents. These adsorption isotherms are able to use as examples to demonstrate that this phenomenon can complicate the development of a standardized batch adsorption procedure as well as interpreting fate and adsorption of toxic inorganic compounds.

  • PDF

Reduction of Phosphate Adsorption by Ion Competition with Silicate in Soil

  • Lee, Yong-Bok;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.286-296
    • /
    • 2007
  • To increase phosphate (P) availability in soils, the efficiency of silicate (Si) in reducing P adsorption was investigated by competitive adsorption tests under changing conditions of pH, ion concentrations, and order of anion addition along with single adsorption properties of each ion at $20^{\circ}C$. In the single ion adsorption study, P and Si ions showed the opposite reaction patterns: phosphate adsorption decreased with increasing pH and attained adsorption maximum however, silicate adsorption increased with increasing pH without attaining adsorption maximum. Phosphorus and Si adsorption were influenced by pH in the range of 5.0 - 9.0 and the type and amount of P and Si concentration. Silicate added to soil before P or in a mixture with P significantly reduced P adsorption above pH 7.0; however, there was no significant Si-induced decreased in P adsorption at pH 5.0 when anions were added as mixture. The efficiency of Si in reducing P adsorption increased with increasing Si concentration and pH. The effect of P on Si adsorption was relatively small at pH 5.0 and no effect of P on silicate adsorption was observed at pH 9.0. The presence of Si strongly depressed P adsorption when Si was added before P compared to P and Si added as a mixture. These results suggest that application of Si may decrease P adsorption and increase the availability of P in soils. Furthermore, a Si source would be better to add before P application to enhance the availability of P in soils.

Modeling As(III) and As(V) adsorption and transport from water by a sand coated with iron-oxide colloids

  • Ko, Il-Won;Lee, Cheol-Hyo;Kim, Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.243-247
    • /
    • 2004
  • Tile development of a porous iron-oxide coated sand filter system can be modelled with the analytical solution of tile transport equation in order to obtain the operating parameters and investigate the mechanism of arsenic removal. The adsorbed amount from the model simulation showed the limitation of adsorption removal during arsenic transport. A loss reaction term in the transport equation plays a role in the mass loss in column conditions, and then resulted into the better model fitting, particularly, for arsenate. Further, the competitive oxyanions delayed the breakthrough near MCL (10 $\mu$g/L) due to the competitive adsorption. This is the reason why arsenate can be strongly attracted in tile interface of an iron-oxide coated sand, and competing oxyanions can occupy the adsorption sites. Therefore, arsenic retention was regulated by non-equilibrium of arsenic adsorption in a porous iron-oxide coated sand media. The transport-limited process seemed to be affect the arsenic adsorption by coated sand.

  • PDF

Adsorption of Dyes with Different Functional Group by Activated Carbon: Parameters and Competitive Adsorption (활성탄에 의한 작용기가 다른 염료의 흡착: 파라미터 및 경쟁 흡착)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.151-158
    • /
    • 2022
  • In this paper, parameter characteristics such as pH effect, isotherm, kinetic and thermodynamic parameters and competitive adsorption of dyes including malachite green (MG), direct red 81 (DR 81) and thioflavin S (TS), which have different functional groups, being adsorbed onto activated carbon were investigated. Langmuir, Freundlich and Temkin isotherm models were employed to find the adsorption mechanism. Effectiveness of adsorption treatment of three dyes by activated carbon were confirmed by the Langmuir dimensionless separation factor. The mechanism was found to be a physical adsorption which can be verified through the adsorption heat calculated by Temkin equation. The adsorption kinetics followed the pseudo second order and the rate limiting step was intra-particle diffusion. The positive enthalpy and entropy changes showed an endothermic reaction and increased disorder via adsorption at the S-L interface, respectively. For each dye molecule, negative Gibbs free energy increased with the temperature, which means that the process is spontaneous. In the binary component system, it was found that the same functional groups of the dye could interfere with the mutual adsorption, and different functional groups did not significantly affect the adsorption. In the ternary component system, the adsorption for MG lowered a bit, likely to be disturbed by the other dyes meanwhile DR 81 and TS were to be positively affected by the presence of MG, thus resulting in much higher adsorption.

Competitive Adsorption Characteristics of Rapid Cooling Slag in Single- and Multi-Metal Solutions (단일 및 복합중금속용액에서 제강급랭슬래그의 경쟁흡착특성)

  • Park, Jong-Hwan;Kim, Hong-Chul;Kim, Seong-Heon;Lee, Seong-Tae;Kang, Byung-Hwa;Kang, Se-Won;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • BACKGROUND: Heavy metal adsorption not only depends on rapid cooling slag(RCS) characteristics but also on the nature of the metals involved and on their competitive behavior for RCS adsorption sites. The goal of this study was to investigate the competitive absorption characteristics of Cu, Cd and Zn in single- and multi-metal forms by RCS.METHODS AND RESULTS: Both single- and multi-metal adsorption experiments were conducted to determine the adsorption characteristics of RCS for the heavy metals. Adsorption behaviors of the heavy metals by RCS were evaluated using both the Freundlich and Langmuir adsorption isotherm equations. The maximum adsorption capacities of metals by RCS were in the order of Cu(16.6 mg/g) > Cd(8.1 mg/g) > Zn(6.2 mg/g) in the single-metal adsorption isotherm and Cu(14.5 mg/g) >> Zn(1.3 mg/g) > Cd(0.6 mg/g) in the multi-metal adsorption isotherm. Based on data obtained from Freundlich and Langmuir adsorption models and three-dimensional simulation, multi-metal adsorption behaviors differed from single- metal adsorption due to competition. Cadmium and Zn were easily exchanged and substituted by Cu during multi-metal adsorption.CONCLUSION: Results from adsorption experiments indicate that competitive adsorption among metals increases the mobility of these metals.

Adsorption Isotherms of Catechin Compounds on (+)Catechin-MIP

  • Jin, Yinzhe;Wan, Xiaolong;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1549-1553
    • /
    • 2008
  • A molecular imprinted polymer (MIP) using (+)catechin ((+)C) as a template and acrylamide (AM) as a functional monomer was prepared. Acetonitrile was used as the porogen with ethylene glycol dimethacrylate (EGDMA) as the crosslinker and 2,2'-azobis(isobutyronitrile) (AIBN) as the initiator. The adsorption isotherms in the MIP were measured and the parameters of the equilibrium isotherms were estimated by linear and nonlinear regression analyses. The linear equation for original concentration and adsorpted concentrations was then expressed, and the adsorption equilibrium data were correlated into Langmuir, Freundlich, quadratic, and Langmuir Extension isotherm models. The mixture compounds of (+)C and epicatechin (EC) show competitive adsorption on specific binding sites of the (+)catechin-MIP. The adsorption concentrations of (+)C, epicatechin (EC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG), on the (+)catechin-molecular imprinted polymer were compared. Through the analysis, the (+)catechin-molecular imprinted polymer showed higher adsorption ability than blank polymer which was synthesized molecular imprinted polymer without (+)catechin. Furthermore, the competitive Langmuir isotherms were applied to the mixture compounds of (+)C and EC.

An influence on EDC/PPCPs adsorption onto single-walled carbon nanotubes with cationic surfactant (단일벽 탄소나노튜브의 미량유해물질 흡착거동에서 양이온 계면활성제의 영향에 관한 연구)

  • Heo, Jiyong;Lee, Heebum;Han, Jonghun;Son, Mihyang;Her, Namguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.419-429
    • /
    • 2014
  • Recent studies have been reported the presence of Endocrine Disrupting Compounds, Pharmaceuticals and Personal Care Products (EDC/PPCPs) in surface and wastewater, which could potentially affect to the complicate behavior in coupled presence of nano-colloid particles and surfactants (adsorption, dispersion, and partitioning). In this study, the adsorption of EDC/PPCPs by Single Walled Carbon Nanotubes (SWNTs) as a representative of nano-particles in cationic surfactant solutions were investigated. Hydrophobic interactions (${\pi}-{\pi}$ Electron Donor-Acceptor) have been reported as a potential adsorption mechanisms for EDC/PPCPs onto SWNTs. Generally, the adsorptive capacity of the relatively hydrophobic EDC/PPCPs onto SWNTs decreased in the presence of cationic surfactant (Cetyltrimethyl Ammonium Bromide, CTAB). This study revealed that the competitive adsorption occurred between CTAB cations and EDC/PPCPs by occupying the available SWNT surface (CTAB adsorption onto SWNTs shows five-regime and maximum adsorption capacity of 370.4 mg/g by applying the BET isotherm). The adsorption capacity of $17{\alpha}$-ethinyl estradiol (EE2) on SWNT showed the decrease of 48% in the presence of CTAB. However, the adsorbed naproxen (NAP) surely increased by forming hemimicelles and resulted in a favorable media formation for NAP partition to increase SWNTs adsorption capacity. The adsorbed NAP increased from 24 to 82.9 mg/g after the interaction of CTAB with NAP. The competitive adsorption for EDC/PPCPs onto SWNTs is likely to be a key factor in the presence of cationic surfactant, however, NAP adsorption showed a slight competition through $CH_3-CH_3$ interaction by forming hemimicelles on SWNT surface.

Competitive Adsorption of Multi-species of Heavy Metals onto Sandy Clay Loam and Clay Soils (사질식양토와 식토에서 중금속 이온의 다중 경쟁 흡착)

  • Chung, Doug Y.;Noh, Hyun-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.238-246
    • /
    • 2005
  • We conducted this investigation to observe competitive adsorption phenomena among the heavy metals onto the available sorption sites of soil particle surfaces in sandy clay loam and clay soil collected from Nonsan city, Chungnam and Yoosung, Daejeon in Korea, respectively. Polluted and contaminated soils can often contain more than one heavy metal species, resulting in competition for available sorption sites among heavy metals in soils due to complex competitive ion exchange and specific sorption mechanism. And the adsorption characteristics of the heavy metals were reported that the selectivity for the sorption sites was closely related with electropotential and electro negativity carried by the heavy metals. The heavy metals were treated as single, binary and ternary systems as bulk solution phase. Adsorption in multi-element system was different from single-element system as Cr, Pb and Cd. The adsorption isotherms showed the adsorption was increased with increasing equilibrium concentrations. For binary and ternary systems, the amount of adsorption at the same equilibrium concentration was influenced by the concentration of individual ionic species and valence carried by the respective heavy metal. Also we found that the adsorption isotherms of Cd and Pb selected in this experiment were closely related with electronegativity and ionic potential regardless number of heavy metals in solution, while the adsorption of Cr carried higher valance and lower electro negativity than Cd and Pb was higher than those of Cd and Pb, indicating that adsorption of Cr was influenced by ionic potential than by electronegativity. Therefore adsorption in multi-element system could be influenced by electronegativity and ionic potential and valance for the same valance metals and different valance, respectively. But it still needs further investigation with respect to ionic strength and activity in multi-element system to verify sorption characteristics and reaction processes of Cr, especially for ternary system in soils.

Competitive Adsorption for Binary Mixture of 4-Nitrophenol and Phenol on RSTA using GAC (GAC를 이용한 RSTA에서 Phenol과 4-Nitrophenol의 이성분계 경쟁흡착)

  • Lee, Seung-Mok;Kim, Dae-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.723-731
    • /
    • 2000
  • In recent years, the amount and number of synthetic organic compounds(SOCs) discharged from various industries has been increasing. Granular activated carbon(GAC) adsorption is one of the best available technology to remove SOCs from water supplies and wastewater. In this paper competitive adsorption for binary mixture of 4-nitrophenol and phenol on reverse stratified tapered adsorber(RSTA) using GAC was studied. Two isotherm experiments were conducted, one for phenol and the other for 4-nitrophenol. The phenol data of binary mixture isotherm were not fitted to Freundlich isotherm. The competitive adsorption increased significantly with decreasing carbon dose and increasing adsorbate concentration. The RSTA was found to provide an increase in breakthrough time when decreasing flow rate, increasing angle and injection layers. The performance enhancement provided by RSTA can be exploited in separation and in the purification of fluids.

  • PDF