• Title/Summary/Keyword: Compensation for Shrinkage

Search Result 37, Processing Time 0.022 seconds

Study on the compensation of shape error using Shrinkage rate of resin in Rapid Prototyping (쾌속조형시 레진의 수축률을 고려한 형상오차보정에 관한 연구)

  • 이지용;김태호;박재덕;박정보;전언찬
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.351-355
    • /
    • 2003
  • Recently, the Rapid Prototyping System makes used of changing file format. The most problem is produced by this process. It is influenced by the precision of shape manufacturing. And It is most influenced by shrinkage rate within many elements influence the precision of 3D shape manufacturing. In result, the length strain in each axis cause at STL file transforming. It will compensate for utilizing the shrinkage rate.

  • PDF

A Study on Improvement on Dimensional Accuracy of SLS parts using Taguchi Method (다구찌 방법을 이용한 SLS 조형품의 치수정밀도 향상에 관한 연구)

  • Hwang, Po-Jung;Yang, Hwa-Jun;Lee, Seok-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.860-865
    • /
    • 2000
  • This Paper Proposes the test pieces of X, Y and Z axes to compensate the shape distortion of Selective Laser Sintering(SLS) parts resulting from the phase change during the sintering process. In no case of the proposed compensation test pieces of X, Y axes the accurate rates of shrinkage can be measured with the reduction of curling which is obtained from adjustment of build orientation and the formula used to get scale factors are proposed with the shrinkage rates of them. The scale factors of X, Y and Z axes are generated by building up proposed compensation test pieces. The generated scale iactors are required to satisfy the dimensional accuracy even if there are changes of the build position and the size of SLS parts in the build chamber. For this reason, it is proposed that the build positions and the size be considered to be noise factors against the compensation test pieces and a method is also proposed that scale factors be selected to robustly maintain the dimensional accuracy of SLS parts under the actual operating conditions with the application of the Taguchi Method.

  • PDF

Engineering Properties of Low Cement Mortar with type and Various Incorporating Ratios of Setting Accelerator (응결촉진제 종류 및 치환율 변화에 따른 저시멘트 모르타르의 공학적 특성)

  • Jo, Man-Ki;Han, Sang-Yoon;Cha, Cheon-Soo;Park, Yong-Kyu;Yoon, Gi-Won;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.143-144
    • /
    • 2015
  • In this research it was attempted to analyze the general engineering properties of low cement mortar according to the type of setting accelerator and substitution rate, when 1% substitution rate for setting accelerator was used a high rate of compressive strength manifestation was shown and that the WS-10 type setting accelerator was appropriate. For the rate of change of length, when 3% substitution rate for setting accelerator was used, it was shown that due to initial expansion the shrinkage compensation was not significant, and when taking into consideration strength and shrinkage, 1% of WS-10 was shown to be appropriate.

  • PDF

Novel Process to Improve Defect Problems for Thermal Nanoimprint Lithography (열 나노임프린트 리소그래피를 위한 패턴의 결함 향상에 관한 실험적 연구)

  • Park, Hyung-Seok;Shin, Ho-Hyun;Seo, Sang-Won;Sung, Man-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.223-230
    • /
    • 2006
  • The reliability of imprint patterns molded by stamps for industrial application of nanoimprint lithography (NIL), is an important issue. Usually, defects can be produced by incomplete filling of negative patterns and the shrinkage phenomenon of polymers in conventional NIL. In this paper, the patterns that undergo a varied temperature or varied pressure period during the thermal NIL process have been investigated, with the goal of resolving the shrinkage and defective filling problems of polymers. The effects on the formation of polymer patterns in several profiles of imprint processes are also studied. Consequently, it is observed that more precise patterns are formed by the varied temperature (VT-NIL) or varied pressure (VP-NIL). The NIL (VT-NIL or VP-NIL) process has a free space compensation effect on the polymers in stamp cavities. From the results of the experiments, the polymer's filling capability can be improved. The VT-NIL is merged with the VP-NIL for the better filling property. The patterns that have been imprinted in the merged NIL are compared with the results of conventional NIL. In this study, the improvement in the reliability for results of thermal NIL has been achieved.

The Influence Factors on the Compensation of Column Shortening in Tall Buildings (초고층 건물의 Column Shortening보정에 미치는 영향요소)

  • Mun, Il-Won;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.208-215
    • /
    • 2018
  • The causes of column shrinkage and the codes that have been studied up to now are discussed. The documents mentioned in the code deal with the drying shrinkage, creep, compressive strength and elastic modulus of the specimen, and the elastic deformation calculated from the structural analysis. However, the deformation due to the temperature caused by the long term monitoring is less than that caused by the factors generated by the previous studies. In the previous studies, it was found that dehydration shrinkage, creep, and elastic deformation were not considered for temperature-induced deformation, while for the specimen experiments, the temperature-related items were replaced with the humidity-related terms The compensation value by the proposed equation showed error of 4.9 mm in the upper direction and 1.0mm in the lower direction when calculating column shortening, and it was found that its value by the proposed equation almost coincided with the measurement value in Site. Therefore, it is necessary to further study the temperature that can be omitted in calculating the existing column shortening, to consider the influence factors, and to supplement the criteria for the temperature measurement of the structure as well as the specimen tests.

Temperature Compensation Technique for Steel Sleeve Packaged FBG Strain Sensor and Its Application in Structural Monitoring

  • Yun, Ying-Wei;Jang, Il-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.1-5
    • /
    • 2008
  • As bare Fiber Bragg Grating (FBG) sensors are very fragile, bare FBG without encapsulation is not properly applied in practical infrastructures directly due to the harsh environment in practical engineering. Steel sleeve packaged FBG strain sensor is widely used in civil engineering. Since FBG senses both strain and temperature simultaneously, for accurate measurement of strain, temperature compensation for FBG strain sensors is indispensable. In this paper, based on the FBG's strain and temperature sensing principles, the temperature compensation techniques for steel sleeve packaged FBG sensors are brought forward. And the experiment of concrete early-age shrinkage monitoring by dual FBG sensors is carried out to test the feasibility of the temperature compensation technique.

A Study on Key Parameters and Characteristics in the Manufacturing Process of the Dual Pickup Objective Lens (Dual Pickup 대물렌즈의 생산을 위한 주요 Parameter 및 특성에 관한 연구)

  • Woo, Sun-Hee;Lee, Dong-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.117-124
    • /
    • 2007
  • In order to operate CD and DVD compatibly in a pickup system, the objective lens comprise diffractive optical element(DOE) zone and aspheric curvature on its lens surface. The DOE objective lens is effective to simplify this dual-purpose pickup system of the 655nm and 785nm wavelength by using only one lens, but requires more precision manufacturing process and system due to the complicated shape. This paper presents the overall manufacturing process of this objective lens and describes main parameters in each process, for the correction of the aspheric surface in its core, the shrinkage compensation after injection molding, and the uniformity compensation by adjusting molding conditions.

A Study on the Quality Properties of the Expansive For Dry-Shrinkage Compensation of the Floor Mortar (온돌바닥 모르터의 건조수축보상을 위한 팽창제의 품질특성 연구)

  • 이웅종;이종열;정연식;이순기;정성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.155-160
    • /
    • 2000
  • In this paper, we investigated quality properties for the expansive of the CaO-$CaSO_4$ family which used to compensate dry-shrinkage in the floor mortar of On-Dol heating System. This experimental study established the mix condition with quantity of the expansive and is to investigate the relativity between the compress strength and the length change and the relativity between the chemical properties and the length change with the analysis of the physical and chemical properties. As a result of the study, the expansive is controlled by more the CaO than the $CaSO_4$. The relativity between the compress strength and the length change is expressed by exponential function, showing that if the expansive performance is increased, the compress strength is decreased. And the relativity between the chemical properties and the length change is only relative the quantity of the F-CaO among the chemical properties, is expressed by the second order function, showing that if the F-CaO is increased, the expansive performance is increased.

  • PDF

Measured and Predicted Column Shortening of a Tall Reinforced Concrete Building (고층 콘크리트 건물의 기둥축소량 계측연구)

  • 김원상;조한욱;오정근;염경수
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.161-170
    • /
    • 1999
  • The KLCC Petronas Tower 2, one of the world tallest twin reinforced concrete towers constructed in Kuala Lumpur, Malysia, was instrumented during construction for the measurement of vertical time-dependent deformation of columns and corewall. Field measurements were made by means of vibrating wire strain gauges at the corewall, tower and bustle perimeter columns at selected floor levels of the building. Parallel to this observation, laboratory tests were performed on concrete cylinders made in the field in order to obtain the variations of concrete compressive strengths, elastic moduli, strains of creep and shrinkage with time. Monitored vertical deformations are in a good agreement with the prediction based on actual construction sequence and concrete properties from laboratory tests, as well as the analytical results reflected in actual column compensation of the building.