• Title/Summary/Keyword: Compass deck

Search Result 9, Processing Time 0.025 seconds

Optimum Design for Vibration Reduction of Compass Deck Structure in Ship (선박 컴퍼스 갑판 구조물의 저진동 최적설계)

  • Kong, Young-Mo;Choi, Su-Hyun;Song, Jin-Dae;Yang, Bo-Suk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.249-258
    • /
    • 2005
  • Recently, the vibration reduction at a local structure such as compass deck has been continuously requested by ship owner and shipbuilder. Because crews are afflicted with vibration, severe vibration problems even bring about a damage of structure. This study conducted to get an optimized stiffener size of compass deck to reduce the vibration level and decrease the weight of structure in ship. NASTRAN external call type optimization software (OptShip) which makes use of NASTRAN as a solver is used as an optimization tool. The results indicate that the optimum design is promising for real applications.

A Basic Study for Utilization of Autopilot System Using Electromagnetic Compass in a Small Fishing Boat (소형 어선에서 전자자기 컴퍼스를 이용한 항행자동시스템의 실용화에 관한 기초적 연구)

  • Jo, Hyeon-Jeong;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.1
    • /
    • pp.54-59
    • /
    • 2004
  • Experiments were carried out to measure the variation of the compass error on ship's head up bearing by magnetic compass and electromagnetic compass on berthing at the pier in order to obtain a basic information on the utilization of autopilot system using electromagnetic compass in fishing boat. The wooden fishing boat, turned on attracting fish lamps of power consumption 85kW, steering magnetic compass and electromagnetic compass indicated westerly compass error with 7$^{\circ}$ and 13 $^{\circ}$~16$^{\circ}$ respectively. The FRP fishing boat, turned on attracting fish lamps of power consumption 130kW, electromagnetic compass indicated easterly compass error 19$^{\circ}$~23$^{\circ}$. The steel fishing boat, turned on ship's navigation equipments of power consumption 225kW, steering magnetic compass indicated westerly compass error with 16$^{\circ}$. While the difference of compass error using electromagnetic compass indicated westerly compass error with 68$^{\circ}$ on the upper deck when the navigation and fishing equipment turn on compare to turn off the equipment, it had easterly compass error with 16$^{\circ}$, 32$^{\circ}$, 20$^{\circ}$ on the forecastle deck, wheel house and compass deck respectively.

The Varies of Deviation on the Ship's Head up bearing of the electromagnetic Compass around Ship (선체 주변에서의 전자자기 컴퍼스의 선수방위 자차변화)

  • 조현정;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.11-18
    • /
    • 1999
  • In order to secure accuracy and effectiveness of the electromagnetic compass as information sensor for ship's head up bearing with gyro compass, magnetic compass and electromagnetic compass on the sea and on the dock in land.The results obtained were as follows;1. Between the Northeast and the southsouthwest the deviation on ship's head up bearing on electromagnetic compass got easterly deviation with max. $53^{\cire}$on the East and between the Southwest and the Northnortheast westerly deviation with max. $34^{\cire}$ on the Northwest, of which values were not able to be corrected due to the angle excess of deviation adjustment.2. The varies of deviation seemed to have a tendency to increase easterly deviation on the Northeast and the East, easterly deviation after westerly deviation between the South and the Northwest, small one on the North and the Southeast.3. The varies of deviation of ship were larger than the one of around the dock, were extreme on the bow of forecastle deck and were stable on the ship's center line of compass deck at the dock in land.

  • PDF

Vibration and Noise Level on the Training Ship Pusan 403 (실습선 부산 403호의 진동과 소음)

  • Park, Jung Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.8-8
    • /
    • 1987
  • This paper describes on the distribution of the vibration and the noise produced on a skipjack pole and line training ship M/S Pusan 403 (243GT, 1,000ps) under the cruising or drifting condition. The vibration and the noise level were measured by use of protable vibration analyzer (B and K 3513) and sound level meter (B and K 2205), and so the vibration level was converted into dB unit. The check points were set through every decks and around important places of the ship. The results obtained can be summarized as follows: 1. The vibration and the noise level 1) On the main deck, both the vibration and the noise level were highest at the vertically above the main engine, whereas the vibration level was the lowest in the bow store and the noise level beneath the bridge. 2) Under cruising condition, the vibration level around the cylinder head of main engine, port side of the engine room, on the shaft tunnel was 80, 67, 65 dB and the noise level 104, 87, 86 dB, respectively. 3) The vibration level on the vertical line passing through the bridge was the highest at the orlop deck with 60 dB and the lowest on the bridge deck with 55 dB, whereas the noise level the highest at the compass deck with 75 dB and the lowest at the orlop deck with 53 dB. 4) The vibration and the noise level on the open decks were the highest with 65 dB and 84 dB on the boat deck, whereas the vibration level was the lowest at the lecture room with 51 dB and the noise level the lowest at the fore castle deck with 57 dB. 5) On the orlop decks, both the vibration and the noise level were the highest at the engine room with 65 dB and 85 dB, and the lowest at bow store with 54 dB and 52 dB, respectively. Comparing with the vibration level and the noise level, the vibration level was higher than the noise level in the bow part and it was contrary in the stern part of the ship. 2. Vibration analysis 1) The vibration displacement and the vibration velocity were the greatest at the cylinder head of main engine with 100μm and 11mm/sec, and were the smallest at the compass deck with 3μm and 0.07mm/sec. They were also attenuated rapidly around the frequency of 100Hz and over. 2) The vibration acceleration was the greatest at the cylinder head with the main frequency of 1KHz and the acceleration of 1.1mm/sec super(2), and the smallest at the compass deck with 30KHz and 0.05mm/sec super(2).

Vibration and Noise Level on the Training Ship Pusan 403 (실습선 부산 403호의 진동과 소음)

  • 박중희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.54-60
    • /
    • 1987
  • This paper describes on the distribution of the vibration and the noise produced on a skipjack pole and line training ship M/S Pusan 403 (243GT, 1,000ps) under the cruising or drifting condition. The vibration and the noise level were measured by use of protable vibration analyzer (B and K 3513) and sound level meter (B and K 2205), and so the vibration level was converted into dB unit. The check points were set through every decks and around important places of the ship. The results obtained can be summarized as follows: 1. The vibration and the noise level 1) On the main deck, both the vibration and the noise level were highest at the vertically above the main engine, whereas the vibration level was the lowest in the bow store and the noise level beneath the bridge. 2) Under cruising condition, the vibration level around the cylinder head of main engine, port side of the engine room, on the shaft tunnel was 80, 67, 65 dB and the noise level 104, 87, 86 dB, respectively. 3) The vibration level on the vertical line passing through the bridge was the highest at the orlop deck with 60 dB and the lowest on the bridge deck with 55 dB, whereas the noise level the highest at the compass deck with 75 dB and the lowest at the orlop deck with 53 dB. 4) The vibration and the noise level on the open decks were the highest with 65 dB and 84 dB on the boat deck, whereas the vibration level was the lowest at the lecture room with 51 dB and the noise level the lowest at the fore castle deck with 57 dB. 5) On the orlop decks, both the vibration and the noise level were the highest at the engine room with 65 dB and 85 dB, and the lowest at bow store with 54 dB and 52 dB, respectively. Comparing with the vibration level and the noise level, the vibration level was higher than the noise level in the bow part and it was contrary in the stern part of the ship. 2. Vibration analysis 1) The vibration displacement and the vibration velocity were the greatest at the cylinder head of main engine with 100$\mu$m and 11mm/sec, and were the smallest at the compass deck with 3$\mu$m and 0.07mm/sec. They were also attenuated rapidly around the frequency of 100Hz and over. 2) The vibration acceleration was the greatest at the cylinder head with the main frequency of 1KHz and the acceleration of 1.1mm/sec super(2), and the smallest at the compass deck with 30KHz and 0.05mm/sec super(2).

  • PDF

Performance of Magnetic Compasses Installed on the Small Fishing Vessels (연안어선 자기컴퍼스에 관한 연구)

  • Hong, Jang-Pyo;Shin, Hyeong-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.21-29
    • /
    • 1993
  • The magnetic compass as a principal navigational instrument has been long used to fix ship's position and to determine ship's course. Particularly, in the small fishing vessels the studies on performance and rational usages for magnetic compass are requried to improve the safety and productivity of the small fishing vessels even though gyro compass is developed nowadays. For this purpose, the author examined the present condition of the magnetic compasses which are intalled on 219 small fishing vessels, and carried out a series of performance survey for each compass of them and also found the measured values of deviation by installation position of compass, respectively. The results obtained are summarized as follows: 1. The small fishing vessels less than 4 tons among the 219 small fishing vessels from 1 to 10 tons investigated were 50% of them. Only 1% of them were equipped with the deviation correctors, and 14 fishing vessels used the magnetic compasses which are more than 20 years old. 2. According to the compass installation position, the measured values of the deviation of the compass installed on the top bridge and the compass bed in bridge were ascertained to be the smallest, and those values of the compass installed on the bridge deck above engine room were larger and irregular. 3. The concomitant angle of the magnetic compasses installed on the experimented 4 fishing vessels were measured to be 6$^{\circ}$ to 16$^{\circ}$ and not accorded with the Korean standard values.

  • PDF

Optimum Design of Local Structure in Ship Based on Global Search Method (전역탐색법을 이용한 선박 국부구조물의 최적설계)

  • 공영모;최수현;송진대;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.416-420
    • /
    • 2004
  • Recently, the importance of vibration reduction at the local structure such as tank, deck which attached machinery and compass deck, has continuously increased by owner and shipbuilder. Because crews are afflicted with them and severe vibration problems affect on the crack of structure. This study conducted optimum design to get a stiffener size of local structure to reducing the vibration level and dec leasing the weight of structure in ship. Random tabu search method (R-Tabu) has fast converging time and can search variables size domains for nonlinear problems. This paper used Nastran external call type independence optimization method which makes using a solver module from Nastran.

  • PDF

Application of Nonlinear Integer Programming for Vibration Optimization of Ship Structure (선박 구조물의 진동 최적화를 위한 비선형 정수 계획법의 적용)

  • Kong, Young-Mo;Choi, Su-Hyun;Song, Jin-Dae;Yang, Bo-Suk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.654-665
    • /
    • 2005
  • In this paper, we present a non-linear integer programming by genetic algorithm (GA) for available sizes of stiffener or thickness of plate in a job site. GA can rapidly search for the approximate global optimum under complicated design environment such as ship. Meanwhile it can handle the optimization problem involving discrete design variable. However, there are many parameters have to be set for GA, which greatly affect the accuracy and calculation time of optimum solution. The setting process is hard for users, and there are no rules to decide these parameters. In order to overcome these demerits, the optimization for these parameters has been also conducted using GA itself. Also it is proved that the parameters are optimal values by the trial function. Finally, we applied this method to compass deck of ship where the vibration problem is frequently occurred to verify the validity and usefulness of nonlinear integer programming.

Characteristics of bridge task in Korean coastal large trawler (우리나라 근해 대형트롤 어선의 선교업무 특성)

  • Kim, Min-Son;Shin, Hyeon-Ok;Lee, Ju-Hee;Hwang, Bo-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.3
    • /
    • pp.301-310
    • /
    • 2013
  • To suggest a standard concerning with the arrangement of bridge equipment, the authors conducted the video observations with 3CCD (charge coupled device) cameras installed on the ceil of the bridge for monitoring the working activities of two bridge teams (the skipper/mate1 and the skipper/mate2) in a Korean coastal large trawler(gross tonnage: 139) for five days from July 30th. 2010 and analyzed of the data. Work elements coded by the work activities were input on the sheet of work analysis by the time unit of 1 sec according to the time occurred. A single work element among the work activities for every 5 minutes was denoted as the number of occurrence. The frequency of equipment usage was limited only in the usage of the equipment. In the case of the navigation and the towing net two ranks were integrated and analyzed. On the other hand, in the case of the casting net and the hauling net, two processes were integrated to as one and then analyzed separately as two ranks. As the results, 15 elements of work was carried out between two bridge teams for the observation; lookout, radar, GPS plotter, fish finder, net monitor, fishing deck, RPM indicator, rudder angle indicator, compass card, for maneuver; steering, ship speed control, trawl winch operation and external communications, paper works and others. It was found that the work load of the skipper per 5 minutes accordance with the navigation, the casting net, the towing net and the hauling net are 20.5 times, 11.9 times, 38.0 times and 9.5 times respectively, the mates are 65.2 times, 66.5 times, 85.7 times and 59.1 times respectively. The radar was shown the highest frequency of the equipment usage and the next was the fish finder, the GPS plotter and the external communications in the case of the navigation. In the case of the towing net the frequency of usage was high the ranking as the radar, the net monitor, the fish finder, the GPS plotter, the steering system and the external communications. In the case of the integrated process both of the casting and hauling net the trawl winch was shown the highest frequency to the skipper and the next was the GPS plotter and the radar, and the steering system was shown the highest frequency to the mate and the next was the radar, the ship speed control system, the GPS plotter, the net monitor and the fish finder.