• 제목/요약/키워드: Compartment modeling

Search Result 66, Processing Time 0.024 seconds

Numerical Study on the Change in Fire Characteristic as Operating Water-mist in Under-ventilated Compartments (워터미스트 작동에 의한 산소저공급 실내화재 특성 변화에 대한 수치해석 연구)

  • Ko, G.H.;Lee, S.H.;Ryou, H.S.
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.156-161
    • /
    • 2008
  • The present article reports a numerical study on the fire characteristic change by water-mist in under-ventilated compartments. The natural gas and heptane pool fires are used as fire sources, which are located in the bottom center of the 2/5 reduced-scaled model of the ISO 9705 standard room. The fire modeling using the FDS (Fire Dynamics Simulator) is validated by comparison with previously published experimental results. For temperature and combustion gas concentrations at two positions located in the upper layer of compartment, the predicted results with and without water-mist are compared each other. The results show that under the water-mist operation, the predicted temperature and carbon monoxide concentration reduce as $300{\sim}400^{\circ}C$ and about 20%, respectively, compared to those without water-mist.

  • PDF

Modeling and adaptive pole-placement control of LDPE autoclave reactor

  • Ham, Jae-Yong;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.146-151
    • /
    • 1992
  • A two-compartment four-cell model is developed for the adiabatic autoclave slim type reactor for free radical polymerization of low density polyethylene(LDPE). The mass and energy balances give rise to a set of ordinary differential equations, and by analyzing the system it is possible to predict properly not only the reactor performance but also the properties of polymer product. The steady state multiplicity is found to exist and examined by constructing the bifurcation diagram. The effects of various operation parameters on the reactor performance and polymer properties are investigated systematically to show that the temperature distribution plays the central role for the properties of polymer product. Therefore, it is essential to establish a good control strategy for the temperature in each compartment. In this study it is shown that the reactor system can be adoptively controlled by pole-placement algorithm with conventional PID controller. To accomplish a satisfactory control, the estimator and controller are initialized during the period of start-up.

  • PDF

Simulation for Improvement of Temperature Distribution Inside Refrigerator (냉장고 고내 온도산포 개선에 관한 전산모사)

  • Gao, Jia-Chen;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.98-103
    • /
    • 2019
  • With the increasing need for environmental protection, it is particularly important to improve the energy saving and reliability of refrigerators. Generally, the cold air flowing into the freezer compartment transits to the bottom of the refrigerating compartment, which can lead to uneven temperature distribution. This paper proposes two design solutions for improving the temperature distribution problem. Of these, the optimal refrigeration design was selected and tested using Computational Fluid Dynamics (CFD) modeling and simulation. The results showed improved uniformity of the temperature distribution inside the refrigerator, thus benefitting food storage while reducing energy consumption.

Application of reinforcement learning to fire suppression system of an autonomous ship in irregular waves

  • Lee, Eun-Joo;Ruy, Won-Sun;Seo, Jeonghwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.910-917
    • /
    • 2020
  • In fire suppression, continuous delivery of water or foam to the fire source is essential. The present study concerns fire suppression in a ship under sea condition, by introducing reinforcement learning technique to aiming of fire extinguishing nozzle, which works in a ship compartment with six degrees of freedom movement by irregular waves. The physical modeling of the water jet and compartment motion was provided using Unity 3D engine. In the reinforcement learning, the change of the nozzle angle during the scenario was set as the action, while the reward is proportional to the ratio of the water particle delivered to the fire source area. The optimal control of nozzle aiming for continuous delivery of water jet could be derived. Various algorithms of reinforcement learning were tested to select the optimal one, the proximal policy optimization.

Development of Underwater Hull Search Time Prediction Model with Discrete Event Simulation (이산사건 시뮬레이션을 이용한 수중 선체 탐색 시간 예측 모델 개발)

  • Joopil Lee;Seung-Ho Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.152-160
    • /
    • 2024
  • In the event of a maritime accident, search plans have traditionally been planned using experiential methods. However, these approaches cannot guarantee safety when the scale of a maritime accident increases. Therefore, this study proposes a model utilizing discrete event simulation (DES) to predict the diving time for compartment searches of a ship located on the seabed. The discrete event simulation model was created by applying the DEVS formalism. The M/V Sewol sinking was used as an example to simulate how to effectively navigate compartments of different sizes. The simulation results showed the optimal dive time with the number of decompression chambers needed to navigate the compartment as a variable. Based on this, we propose a methodology for efficient navigation planning while ensuring diver safety.

Modeling Study on Nuclide Transport in Ocean - an Ocean Compartment Model (해양에서의 핵종이동 모델링 - 해양구획 모델)

  • Lee, Youn-Myoung;Suh, Kyung-Suk;Han, Kyong-Won
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.387-400
    • /
    • 1991
  • An ocean compartment model simulating transport of nuclides by advection due to ocean circulation and intertaction with suspended sediments is developed, by which concentration breakthrough curves of nuclides can be calculated as a function of time. Dividing ocean into arbitrary number of characteristic compartments and performing a balance of mass of nuclides in each ocean compartment, the governing equation for the concentration in the ocean is obtained and a solution by the numerical integration is obtained. The integration method is specially useful for general stiff systems. For transfer coefficients describing advective transport between adjacent compartments by ocean circulation, the ocean turnover time is calculated by a two-dimensional numerical ocean model. To exemplify the compartment model, a reference case calculation for breakthrough curves of three nuclides in low-level radioactive wastes, Tc-99, Cs-137, and Pu-238 released from hypothetical repository under the seabed is carried out with five ocean compartments. Sensitivity analysis studies for some parameters to the concentration breakthrough curves are also made, which indicates that parameters such as ocean turnover time and ocean water volume of compartments have an important effect on the breakthrough curves.

  • PDF

Mechanistic Pharmacokinetic/pharmacodynamic Modeling in Isolated Perfused Organs and at the Whole-Body Level

  • Weiss, Michael
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.218-219
    • /
    • 2002
  • In the past, the development of pharmacokinetic/pharmacodynamic (PK/PD) models for quantitating the time course of drug responses was mainly based on two types of models, the empirical effect compartment model that simply accounts for the delay between effect and plasma concentration (hysteresis) and the mechanism-based so-called indirect response model. The first approach traces back to a paper by Segre (1) and its application was popularized by Holford and Sheiner (2); indirect response models were introduced by Jusko's group (3). (omitted)

  • PDF

Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part II: Under-ventilated Fire Condition) (원자력발전소의 다중 구획에서 화재특성 예측을 위한 FDS 검증 (Part II: 환기부족화재 조건))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Park, Jong Seok;Do, Kyusik
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.80-88
    • /
    • 2013
  • The validation of Fire Dynamics Simulator (FDS) was conducted for the under-ventilated fire in well-confined multi-compartments representative of nuclear power plant. Numerical results were compared with experimental data obtained by the OECD/NEA PRISME project. The effects of the numerical boundary conditions (B.C.) in ventilated system and the flame suppression model applied within FDS on the thermal and chemical environments inside the compartment were discussed in details. It was found that numerical B.C. on the vent flow resulting from over-pressure at ignition and under-pressure at extinction should be considered carefully in order to predict accurately the species concentrations rather than temperatures and heat fluxes inside the multi-compartment. The default information of suppression model applied within FDS resulted in artificial phenomena such as flame extinction and re-ignition, and thus the FDS results on the under-ventilated fire showed good agreement with the experimental results as the modified suppression criteria of the fuel used was adopted.

A Study on the Evacuation Performance Review for the Office Buildings (업무용 빌딩의 피난 성능 검토에 관한 연구)

  • 오혁진;백승태;김우석;이수경
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • In this study, it reviewed about evacuation performance of a specified Office Building. assessment tools is FAST 3.1.7 (Estimation of Flash Over, Estimation of Layer Height Down Flow Time), SIMULEX 32-bit (Estimation of Evacuation Time), JASMINE 3.25d. (Smoke Flow Assessment of a specified time) Result from Fire Scenario # 1, Flash Over is not generated in Compartment. Evacuation Time is estimated 25.2 sec by SIMULEX 32-bit. layer height until this time (25.2 sec) was estimated 2.4 m by FAST 3.1.7. After ignition until this time (25.2 sec), smoke was not release to the a corridor. In consequence, We concluded that people in building are completing the safe evacuation without the damage of smoke. Result from Fire Scenario # 1, Flash Over generated 6 min 33.2 sec in Compartment. Evacuation Time is estimated 1 min 25.5 sec by SIMULEX 32-bit. layer height down flow time is 1 min 40.8 sec by FAST 3.1.7 and 5 min 23 sec by theoretical calculation. Also, total building evacuation time was estimated 2 min 26.6 sec. After ignition until this time (2 min 26.6 sec), smoke released to the a corridor but it amount was few little. Therefore, generated smoke in compartment not effected to the people in buildings.

Population Pharmacokinetic Modeling of Vancomycin in Patients with Cancer (암환자에게 반코마이신의 집단약물동태학 모델연구)

  • 최준식;민영돈;범진필
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.160-168
    • /
    • 1999
  • The purpose of this study was to determine pharmacokinetic parameters of vancomycin using peak and trough plasma level (PTL) and Bayesian analysis in 20 Korean normal volunteers, 16 gastric cancer and 12 lymphoma patients and also using the compartment model dependent (nonlinear least squares regression: NLSR) and compartment model independent (Lagrange) analysis in 10 ovarian cancer patients. Nonparametric expected maximum (NPEM) algorithm for calculation of the population pharmacokinetic parameters was used, and these parameters were applied for clinical pharmacokinetic parameters by Bayesian analysis. Vancomycin was administered as dose of 1.0 g every 12 hrs for 3 days by IV infusion over 60 minutes in normal volunteers, gastric cancer and lymphoma patients. Population pharmacokinetic parameters, K and Vd in gastric cancer and lymphoma patients using NPEM algorithm were $0.158{\pm}0.014{\;}hr^{-1},{\;}0.630{\pm}0.043{\;}L/kg{\;}and{\;}0.131{\pm}0.0261{\;}hr^{-1},{\;}0.631{\pm}0.089{\;}L/kg$ respectively. The K and Vd in gastric cancer and lymphoma patients using Bayesian analysis were $0.151{\pm}0.027,{\;}0.126{\pm}0.056{\;}hr^{-1}{\;}and{\;}0.62{\pm}0.105,{\;}0.63{\pm}0.095{\;}L/kg$. The K and Vd in ovarian cancer patient using the NLSR and Lagrange analysis were $0.109{\pm}0.008,{\;}0.126{\pm}0.012{\;}hr^{-1}{\;}and{\;} 0.76{\pm}0.08,{\;}0.69{\pm}0.19{\;}L/kg$, respectively. It is necessary for effective dosage regimen of vancomycin in cancer patients to use these population parameters.

  • PDF