• 제목/요약/키워드: Compartment Volume

검색결과 69건 처리시간 0.022초

밀폐된 구획실의 체적변화가 최대 열발생률에 미치는 영향에 관한 수치해석 연구 (A Numerical Study on the Effect of Volume Change in a Closed Compartment on Maximum Heat Release Rate)

  • 윤홍석;남동군;황철홍
    • 한국화재소방학회논문지
    • /
    • 제31권5호
    • /
    • pp.19-27
    • /
    • 2017
  • 밀폐된 구획실 화재에서 화원의 면적 및 위치, 화재성장률, 구획 체적의 변화가 열발생률을 포함한 주요 화재특성에 미치는 영향이 검토되었다. 이를 위해 닫힌 개구부가 적용된 ISO 9705 화재실을 대상으로 Fire Dynamics Simulator (FDS)를 활용한 화재시뮬레이션이 수행되었다. 주요 결론으로서, 화원의 면적 및 위치의 변화는 최대 열발생률, 총 열량, 상층부의 최대 온도 및 화학종 농도를 포함한 구획 내의 열적 특성과 화학적 특성에 큰 영향을 주지 않음을 확인하였다. 그러나 화재성장률과 구획 체적의 증가는 최대 열발생률 및 총 열량의 증가를 가져오며, 한계산소농도의 감소 및 최대 CO 농도의 증가를 발생시킨다. 마지막으로 화재성장률과 구획 체적의 함수로 표현된 최대 열발생률의 상관식을 도출하여, 밀폐된 구획실 화재에 대한 화재성장곡선의 적용을 위한 방법론이 제안되었다.

Experimental study on hydrogen behavior and possible risk with different injection conditions in local compartment

  • Liu, Hanchen;Tong, Lili;Cao, Xuewu
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1650-1660
    • /
    • 2020
  • Comparing with the large containment, the gas can not flow freely within the local compartment due to the small volume of the compartment in case of serious accident, which affects the hydrogen flow distribution, and it will determines the location where high concentration occurs in compartment. In this paper, hydrogen distribution and possible hydrogen risk in the vessel under the different conditions are investigated. The results show that when the initial gas momentum is increased, the ability of gas enters into the upper region of the vessel will be strengthened, and the hydrogen volume fraction in the upper region of the vessel is higher. Comparing with horizontal source direction, when source direction is vertically towards upper space, hydrogen is more likely to accumulate in the upper region of the vessel. With the increasing of steam mass flow, the dilution effect of steam on the hydrogen volume fraction will be strengthened, while the pressure in the vessel is also increased. When steam flow is decreased, the hydrogen explosion risk is higher in the vessel. The experiment data can provide technical support for the validation of the CFD software and the mitigation of hydrogen risk in the containment compartment.

G7 동력차 동력실 유동해석을 통한 루프후드 구조 연구 (The study for roof hood structure of G7 power car engine compartment using air flow analysis.)

  • 박광복;장규호;이동훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.634-644
    • /
    • 2000
  • The study was carried out about the roof hood structure of power car for Korean High Speed Train. The compatibility for applied material and volume of hood duct was studied using analysis about heat and flow distributions. The materials and volume of duct were mainly determined by output air temperature and flow rate of each electric blocks. This report was described, which focuses on pressure distribution and air temperature within engine compartment of power car.

  • PDF

Internal Changes of Blood Compartment and Heat Distribution in Swamp Buffaloes under Hot Conditions : Comparative Study of Thermo-Regulation in Buffaloes and Friesian Cows

  • Koga, A.;Kurata, K.;Ohata, K.;Nakajima, M.;Hirose, H.;Furukawa, R.;Kanai, Y.;Chikamune, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권6호
    • /
    • pp.886-890
    • /
    • 1999
  • From previous studies, there is a strong possibility in buffaloes that the marked increase in blood volume (BV) under hot conditions contributes to heat transportation from the rectum to the skin. The present study was done to clarify changes with environmental temperature on water-shift between blood and extracellular fluid (ECF), heat distribution between the rectum and the skin, and blood flow rates (BFR) at the hind legs (reflecting the skin surface). Four buffaloes and four Friesian cows were successively exposed to three different temperatures of $20^{\circ}C$, $30^{\circ}C$ and $35^{\circ}C$. BV and ECF volume were measured with Evans' blue and sodium-thiocyanate dilution methods, respectively. Rectal and subcutaneous (as the skin) temperatures were measured by copper-constantan thermocouples. BFR were measured by a supersonic blood flow meter. With an increase in environmental temperature, skin temperature in buffaloes increased significantly than cows, but rectal temperature was not significantly different between two species. BV, especially plasma compartment, increased significantly in only buffaloes, while ECF volume did not change in both species. BFR increased significantly in buffaloes, but not in cows. From these results, the increased of BV may be caused by water flowing from ECF compartment. The water-shift may induce the increase of BFR and skin temperature. It is suggested in the present study that internal changes of blood compartment in buffaloes contribute to transfer of heat to the skin surface.

화재실의 열유동 해석을 위한 수치 해석 방법 (Numerical Analysis Methods for Heat Flow in Fire Compartment)

  • 김광선;손봉세
    • 방재기술
    • /
    • 통권16호
    • /
    • pp.20-23
    • /
    • 1994
  • This article investigates the different numerical methods, which are widely used for purpose of simulating a fire compartment the particular numerical methods such as finite difference, finite element, control Volume, and finite analysis are discribed in order to understand basic concepts and their applications. The fire simulations using fferent methods for the different physical geometrics have been reported in many recent literatures The convergence rate, the accuracy, and the stability are no simply dependent upon the specific method, The study of popular nu-merical methods by being compared among those is therefore significant to understand the nu-merical simulation of fire compartment.

  • PDF

Rat 태생기의 심장성장에 따른 형태측량적 연구 (Morphometric Study of Heart Development in Rat Fetus)

  • 박원학;이용덕;정형재;최정목
    • Applied Microscopy
    • /
    • 제19권2호
    • /
    • pp.85-98
    • /
    • 1989
  • The ventricular myocardia of 14, 16, 18 and 20-day-old rat fetuses and newborns have been studies by light and electron microscopic morphometrics. The volume density of the myocyte and interstitial compartments as well as volume, surface and numerical density of nuclei were estimated by light microscopic morphometrics. Whereas, the volume density of myofibrils and glycogen granules as well as the volume, surface and numerical density of mitochondria were assessed by electron microscopic morphometrics. The volume density of myocyte compartment of the ventricular myocardia in developing fetuses decreased, but increased in newborn rats. On the other hand, the volume density of the interstitial compartment increased in growing fetuses and decreased in newborns. In all groups the volume, surface and numerical density of nuclei decreased gradually with elongation of myocytes. Conversely, the volume, surface and numerical density of mitochondria and volume density of myofibrils and glycogen granules in ventricular myocytes incresed. The increase in numerical density of mitochondria probably reflects an increase in metabolic activity. Sarcomere length also increased during development.

  • PDF

잠수체의 구획 분류 및 체적 계산을 위한 구획 결정 알고리즘 (An Algorithm for Automatic Determination and Calculation of Volumetric Spaces of Submerged Bodies)

  • 박인하;남종호
    • 대한조선학회논문집
    • /
    • 제51권2호
    • /
    • pp.148-153
    • /
    • 2014
  • Submerged bodies such as autonomous underwater vehicles (AUV) or remotely operated vehicles (ROV) are widely used in various fields of exploring underseas. Those bodies keep ballasting and deballasting for stable navigation and operation. Identifying the internal volumetric spaces of the bodies is a primary step for such an operation. Unfortunately, most CAD models given to the engineer do not properly represent the compartments since each face of a compartment exists as an independent entity rather than as a face that belongs to the compartment. In this paper, an algorithm that automatically identify the faces as a group that forms a closed volumetric space, i.e., a compartment is presented. A submerged body is sliced into a number of cross sections. Each sliced section is analyzed to yield closed loops that are sections of the compartment. Then, the associated closed loops are gathered along the longitudinal direction to form a compartment. The algorithm presented is shown to provide a practical and reasonable solution that can readily be used in various applications.

실내화재에 있어서의 대류열전달에 관한 수치연구(II) -혼합대류- (Numerical Study on Convective Heat Transfer in a Compartment Fire(II) - Mixed Convection -)

  • 박외철;고경찬;이광진
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.33-39
    • /
    • 1999
  • In a compartment fire with openings, convective heat transfer consists of natural convection from the hot bodies and forced convection by airflow through the openings. The same finite volume method that was applied to pure natural convection in part I was utilized without modification to the square cavity with two openings. The objective of this study is to investigate effects of the openings on temperature distribution. Flow patterns, temperature distribution and heat transfer were compared for different Rayleigh numbers and with and without the openings.

  • PDF

실내화재에 있어서의 대류열전달에 관한 수치연구 - I. 수치법 검증과 자연대류- (Numerical Study on Convective Heat Transfer in a Compartment Fire - I. Evaluation of Numerical Method and Natural Convection-)

  • 박외철;고경찬
    • 한국안전학회지
    • /
    • 제14권2호
    • /
    • pp.26-31
    • /
    • 1999
  • In a compartment fire, convective heat transfer dominates spread of the fire and smoke movement before flash-over occurs, and natural convection is very important in particular when there are no openings. The finite volume method with SIMPLE algorithm was applied to a square cavity similar to a compartment without an opening. The objectives of this study are to evaluate the method and to simulate natural convection from a hot body in the cavity. The results without the hot body showed an excellent agreement with those of previous studies. Streamlines, isotherms and Nusselt numbers were computed for different Rayleigh numbers.

  • PDF

SIMPLE Algorithm을 이용한 화재실의 열 유체의 수치해석 (Numerical Analysis of Heat Flow in Fire Compartment using SIMPLE Algorithm)

  • 김광선;손봉세
    • 한국화재소방학회논문지
    • /
    • 제6권1호
    • /
    • pp.17-22
    • /
    • 1992
  • We have derived the general transfer equation for governing the continuity, energy transfer, mass and momentum transfer, and turbulent energy dissipation rate within the fire compartment which has the 800t fire source at the center of the floor. The governing transfer equations have been descretized using the finite volume approach and numerically experimented under the SIMPLE algorithm. In order for the SIMPLE algorithm approach to be physically reliable, the test results are compared with those of Morita's SOR Method using Conjugate Residual Method and found to be close to physical values though the computational convergence time still remains to be upgraded. The treatment of source terms in the system of finite difference equations has been critical in order to converge the governing equations within the appropriate time steps. The criteria of convergence allowance for the whole domain have been checked and the sudden change of the non-linear effects from the source term have been avoided. The criteria has been allowed to be for 5$\times$10$^{-5}$ .

  • PDF