• Title/Summary/Keyword: Comparison of images

Search Result 1,777, Processing Time 0.025 seconds

RESEARCH OF PROMOTION JUDGE SYSTEM USING AN IMAGE IN AGRICULTURE

  • Aoki, Kousuke;Kawajiri, Hiroshi;Nishihara, Isao;Nakano, Shizuo;Sugimori, Fumio
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.504-507
    • /
    • 2009
  • Color chart area is automatically extracted in image that captured a crop such as fruits with the color chart, and an approximation formula is obtained for the change in feature value of the color indexes. Comparison is made with the color value of the crop area, and the growing degree is assessed according to the correlation. Using a compact PC equipped with the program, image of fruits is captured, and the output value obtained by the system is compared to the rating by expert. In the automatic recognition of the color chart out of doors, the complete color indexes is correctly acquired in 22 of 29 images. And indoors, they are correctly acquired in all of 34 images. In the color value judgment of the Japanese pear, indoors, 32 of 34 images is within 1.0 of the judgment error (compared the value read off by experts), the average error is about 0.5. These results indicate a practicable value.

  • PDF

Object of Interest Extraction Using Gabor Filters (가버 필터에 기반한 관심 객체 검출)

  • Kim, Sung-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.87-94
    • /
    • 2008
  • In this paper, an extraction method of objects of interest in the color images is proposed. It is possible to extract objects of interest from a complex background without any prior-knowledge based on the proposed method. For object extraction, Gator images that contain information of object location, are created by using Gator filter. Based on the images the initial location of attention windows is determined, from which image features are selected to extract objects. To extract object, I modify the previous method partially and apply the modified method. To evaluate the performance of propsed method, precision, recall and F-measure are calculated between the extraction results from propsed method and manually extracted results. I verify the performance of the proposed methods based on these accuracies. Also through comparison of the results with the existing method, I verily the superiority of the proposed method over the existing method.

  • PDF

Study on the Reconstruction of Pressure Field in Sloshing Simulation Using Super-Resolution Convolutional Neural Network (심층학습 기반 초해상화 기법을 이용한 슬로싱 압력장 복원에 관한 연구)

  • Kim, Hyo Ju;Yang, Donghun;Park, Jung Yoon;Hwang, Myunggwon;Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.72-79
    • /
    • 2022
  • Deep-learning-based Super-Resolution (SR) methods were evaluated to reconstruct pressure fields with a high resolution from low-resolution images taken from a coarse grid simulation. In addition to a canonical SRCNN(super-resolution convolutional neural network) model, two modified models from SRCNN, adding an activation function (ReLU or Sigmoid function) to the output layer, were considered in the present study. High resolution images obtained by three models were more vivid and reliable qualitatively, compared with a conventional super-resolution method of bicubic interpolation. A quantitative comparison of statistical similarity showed that SRCNN model with Sigmoid function achieved best performance with less dependency on original resolution of input images.

Low-dose CT Image Denoising Using Classification Densely Connected Residual Network

  • Ming, Jun;Yi, Benshun;Zhang, Yungang;Li, Huixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2480-2496
    • /
    • 2020
  • Considering that high-dose X-ray radiation during CT scans may bring potential risks to patients, in the medical imaging industry there has been increasing emphasis on low-dose CT. Due to complex statistical characteristics of noise found in low-dose CT images, many traditional methods are difficult to preserve structural details effectively while suppressing noise and artifacts. Inspired by the deep learning techniques, we propose a densely connected residual network (DCRN) for low-dose CT image noise cancelation, which combines the ideas of dense connection with residual learning. On one hand, dense connection maximizes information flow between layers in the network, which is beneficial to maintain structural details when denoising images. On the other hand, residual learning paired with batch normalization would allow for decreased training speed and better noise reduction performance in images. The experiments are performed on the 100 CT images selected from a public medical dataset-TCIA(The Cancer Imaging Archive). Compared with the other three competitive denoising algorithms, both subjective visual effect and objective evaluation indexes which include PSNR, RMSE, MAE and SSIM show that the proposed network can improve LDCT images quality more effectively while maintaining a low computational cost. In the objective evaluation indexes, the highest PSNR 33.67, RMSE 5.659, MAE 1.965 and SSIM 0.9434 are achieved by the proposed method. Especially for RMSE, compare with the best performing algorithm in the comparison algorithms, the proposed network increases it by 7 percentage points.

A Study on the Walkability Scores in Jeonju City Using Multiple Regression Models (다중 회귀 모델을 이용한 전주시 보행 환경 점수 예측에 관한 연구)

  • Lee, KiChun;Nam, KwangWoo;Lee, ChangWoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.4
    • /
    • pp.1-10
    • /
    • 2022
  • Attempts to interpret human perspectives using computer vision have been developed in various fields. In this paper, we propose a method for evaluating the walking environment through semantic segmentation results of images from road images. First, the Kakao Map API was used to collect road images, and four-way images were collected from about 50,000 points in JeonJu. 20% of the collected images build datasets through crowdsourcing-based paired comparisons, and train various regression models using paired comparison data. In order to derive the walkability score of the image data, the ranking score is calculated using the Trueskill algorithm, which is a ranking algorithm, and the walkability and analysis using various regression models are performed using the constructed data. Through this study, it is shown that the walkability of Jeonju can be evaluated and scores can be derived through the correlation between pixel distribution classification information rather than human vision.

Skew Correction for Document Images Using Block Transformation (블록 변환을 이용한 문서 영상의 기울어짐 교정)

  • Gwak, Hui-Gyu;Kim, Su-Hyeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.3140-3149
    • /
    • 1999
  • Skew correction for document images can be using a rotational transformation of pixel coordinates. In this paper we propose a method which corrects the document skew, by an amount of $\theta$ degrees, using block information, where the block is defined as a rectangular area containing adjacent black pixels. Processing speed of the proposed method is faster than that of the method using pixel transformation, since the number of floating-point operations can be reduced significantly. In the proposed method, we rotate only the four corner points of each block, and then identify the pixels inside the block. Two methods for inside pixel identification are proposed; the first method finds two points intersecting the boundary of the rotated block in each row, and determines the pixels between the two intersection points as the inside pixel. The second method finds boundary points based on Bresenham's line drawing algorithm, using fixed-point operation, and fills the region surrounded by these boundaries as black pixels. We have measured the performance of the proposed method by experimenting it with 2,016 images of various English and Korean documents. We have also proven the superiority of our algorithm through performance comparison with respect to existing methods based on pixel transformation.

  • PDF

Thumbnail Generation at Progressive Mode of H.264/AVC (H.264/AVC의 Progressive Mode에서 Thumbnail 영상 생성)

  • Oh, Hyung-Suk;Kim, Won-Ha
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • In this paper, we develop a method for generating thumbnail images at hybrid domain combined the spatial domain and transform domain. The proposed method generates a pixel of a thumbnail image by adding a DC value of residual transform coefficients and an average value of an estimate block. For effectively calculating average values of estimate blocks, we propose a method for reconstructing the boundary pixels of a block. In comparison to the conventional method of decoding the bit stream then scaling down the decoded images, the developed method reduces the complexity by more than 60% while producing identical thumbnail images.

A Study on improving the performance of License Plate Recognition (자동차 번호판 인식 성능 향상에 관한 연구)

  • Eom, Gi-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.203-207
    • /
    • 2006
  • Nowadays, Cars are continuing to grow at an alarming rate but they also cause many problems such as traffic accident, pollutions and so on. One of the most effective methods that prevent traffic accidents is the use of traffic monitoring systems, which are already widely used in many countries. The monitoring system is beginning to be used in domestic recently. An intelligent monitoring system generates photo images of cars as well as identifies cars by recognizing their plates. That is, the system automatically recognizes characters of vehicle plates. An automatic vehicle plate recognition consists of two main module: a vehicle plate locating module and a vehicle plate number identification module. We study for a vehicle plate number identification module in this paper. We use image preprocessing, feature extraction, multi-layer neural networks for recognizing characters of vehicle plates and we present a feature-comparison method for improving the performance of vehicle plate number identification module. In the experiment on identifying vehicle plate number, 300 images taken from various scenes were used. Of which, 8 images have been failed to identify vehicle plate number and the overall rate of success for our vehicle plate recognition algorithm is 98%.

  • PDF

Development and application of a technique for detecting beach litter using a Micro-Unmanned Aerial Vehicle

  • Jang, Seon Woong;Kim, Dae Hyun;Chung, Yong Hyun;Seong, Ki Taek;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.351-366
    • /
    • 2014
  • The aim of this study was to develop software for beach litter detection that includes a Graphical User Interface (GUI) and uses images taken by a micro-unmanned aerial vehicle. Videos were taken over Doomo pebble beach, Sogye pebble beach, and Heungnam sand beach on the northeast coast of Geojedo (Geoje Island), Korea. Still images of actual beach litter were obtained from the videos. The image processing involved preprocessing, morphological image processing, and image recognition. Comparison with still images showing beach litter demonstrated that the software could generally detect litter larger than 50 cm in size such as Styrofoam buoys and circular fish traps (excluding small pixel-size ropes). Combining the proposed method with the conventional surveying approach is expected to enhance the accuracy of beach litter detection. The new technique will also aid in predicting the amount of beach litter generated along coastlines, which is currently difficult to monitor.

Extraction of an Effective Saliency Map for Stereoscopic Images using Texture Information and Color Contrast (색상 대비와 텍스처 정보를 이용한 효과적인 스테레오 영상 중요도 맵 추출)

  • Kim, Seong-Hyun;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1008-1018
    • /
    • 2015
  • In this paper, we propose a method that constructs a saliency map in which important regions are accurately specified and the colors of the regions are less influenced by the similar surrounding colors. Our method utilizes LBP(Local Binary Pattern) histogram information to compare and analyze texture information of surrounding regions in order to reduce the effect of color information. We extract the saliency of stereoscopic images by integrating a 2D saliency map with depth information of stereoscopic images. We then measure the distance between two different sizes of the LBP histograms that are generated from pixels. The distance we measure is texture difference between the surrounding regions. We then assign a saliency value according to the distance in LBP histogram. To evaluate our experimental results, we measure the F-measure compared to ground-truth by thresholding a saliency map at 0.8. The average F-Measure is 0.65 and our experimental results show improved performance in comparison with existing other saliency map extraction methods.