• Title/Summary/Keyword: Comparison analysis

Search Result 17,655, Processing Time 0.057 seconds

A Comparative Study on the Trend of Technological Convergence (기술융합의 세계적 추세와 한국의 현황 비교분석)

  • Lee, June Young;Kim, Dohyun;Ahn, Sejung;Kwon, Oh-Jin;Moon, Yeong-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.3
    • /
    • pp.222-232
    • /
    • 2013
  • In recent years, 'technological fusion or convergence' has drawn a lot of attention of innovation researchers and governmental policy makers as the driving force of technological innovation and industrial growth. There are, however, few studies on the analysis of longitudinal trends of technological convergence and its comparison between global and national level. In this study, with the citation data of about 18 million articles, we analyzed 1) the growth of representative convergence research areas, 2) the convergence of citing patterns between research fields, and 3) the changing trend of diversity index of all research fields. We conclude that technological convergence in korea shows the relatively strong orientation to the combination of neighboring fields than that of heterogenous fields in comparison to global trend. In particular, the relatively weak activity of cognitive science and the low level of mutual exchange between arts/humanities/social sciences and natural/engineering sciences in Korea are emphasized.

Comparative study of constitutive relations implemented in RELAP5 and TRACE - Part I: Methodology & wall friction

  • Shin, Sung Gil;Lee, Jeong Ik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3526-3539
    • /
    • 2022
  • Nuclear thermal-hydraulic system analysis codes have been developed to simulate nuclear reactor systems, which solve simplified governing equations by replacing source terms with constitutive relations for simulating entire reactor systems with low computational resources. For half a century, many efforts have been made for wider versatility and higher accuracy of system codes, but various factors can affect the code analysis results, and it was difficult to isolate these factors and interpret them individually. In this study, two system codes, RELAP5 and TRACE, which have many users and are highly reliable, are selected to analyze only the effects of constitutive relations. The influence of constitutive relations is analyzed using in-house platforms that replicate constitute relations of RELAP5 and TRACE equally to exclude factors that may affect analysis results, such as governing equation solvers and user effects. Among the various constitutive relations, the analysis is performed on the wall variables expected to have the most influence on the analysis results. Part 1 paper presents the methodology and wall friction model comparison, while Part 2 paper shows wall heat transfer comparison of the two selected codes.

Comparison of different codes using fragility analysis of a typical school building in Türkiye: Case study of Bingöl Çeltiksuyu

  • Ibrahim Baran Karasin;Mehmet Emin Oncua
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.235-247
    • /
    • 2023
  • Bingöl, a city in eastern Türkiye, is located at a very close distance to the Karlıova Region which is a junction point of the North Anatolian Fault Zone and Eastern Anatolian Fault Zone. By bilateral step over of North Anatolian Fault Zone and Eastern Anatolian Fault Zone each other there occurred NorthWest-SouthEast extended right-lateral and NorthEast-SouthWest extended left-lateral fault zones. In this paper, a typical school building located in Bingöl Çeltiksuyu was selected as the case study. Information on the school building and Bingöl Earthquake (2003) have been given in the paper. This study aimed to determine the fragility curves of the school building according to HAZUS 2022, Turkish Seismic Codes 1998, 2007 and 2018. These codes have been introduced in terms of damage limits. Incremental dynamic analysis is a parametric analysis method that has recently emerged in several different forms to estimate more thoroughly structural performance under seismic loads. Fragility analysis is commonly using to estimate the damage probability of buildings. Incremental Dynamic Analysis have performed, and 1295 Incremental Dynamic Analysis output was evaluated to obtain fragility curves. 20 different ground motion records have been selected with magnitudes between 5.6M and 7.6M. Scaling factors of these ground motions were selected between 0.1g and 2g. Comparison has been made between HAZUS 2022 and Turkish Seismic Codes 1998, 2007 and 2018 in terms of damage states and how they affected fragility curves. TSC 1998 has more conservative strictions along with TSC 2018 than TSC2007 and HAZUS moderate and extensive damage limits.

Evaluating the Usability of Size Comparison UI for Online Clothing Shopping Malls

  • Kim, Heesun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.61-70
    • /
    • 2020
  • As mobile device usage time increases thanks to the development of information and communication alongside the increase in the spread of smartphones, mobile shopping has become a common trend. While mobile shopping has the advantage of saving both time and money, it may also result in dissatisfaction with product differences after purchase. For online clothing shopping malls, in particular, if the size does not match after purchase, it is difficult for customers to return or exchange the goods. To address this problem, some mobile apparel shipping malls offer a virtual fitting service and a size comparison function; however, the number of such malls remains low. In this paper, a usability evaluation was performed on a mobile apparel shopping mall that provides a size comparison function. The three apps selected for evaluation have different size input methods, and a slightly different method of providing results after comparing the user's dimensions with the dimensions of the clothes to be purchased. In this paper, the evaluators were asked to select clothes at the shopping mall and perform the task of deciding the size of the clothes to be purchased through their own measurements and comparison while also evaluating the effectiveness, meaning, and satisfaction of the apps. Based on the analysis of the results, this paper aims to produce an improvement plan and help design the size comparison UI (User Interface) in the future.

Numerical comparison between lattice and honeycomb core by using detailed FEM modelling

  • Giuseppe, Pavano
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.377-400
    • /
    • 2022
  • The aim of this work is a numerical comparison (FEM) between lattice pyramidal-core panel and honeycomb core panel for different core thicknesses. By evaluating the mid-span deflection, the shear rigidity and the shear modulus for both core types and different core thicknesses, it is possible to define which core type has got the best mechanical behaviour for each thickness and the evolution of that behaviour as far as the thickness increases. Since a specific base geometry has been used for the lattice pyramidal core, the comparison gives us the opportunity to investigate the unit cell strut angle giving the higher mechanical properties. The presented work considers a detailed FEM modelling of a standard 3-point bending test (ASTM C393/C393M Standard Practice). Detailed FEM modelling addresses to detailed discretization of cores by means of beam elements for lattice core and shell elements for honeycomb core. Facings, instead, have been modelled by using shell elements for both sandwich panels. On lattice core structure, elements of core and facings are directly connected, to better simulate the additive manufacturing process. Otherwise, an MPC-based constraint between facings and core has been used for honeycomb core structure. Both sandwich panels are entirely built of Aluminium alloy. Prior to compare the two models, the FEM sandwich panel model with lattice pyramidal core needs to be validated with 3-point bending test experimental results, in order to ensure a good reliability of the FEM approach and of the comparison. Furthermore, the analytical validation has been performed according to Allen's theory. The FEM analysis is linear static with an increasing midspan load ranging from 50N up to 500N.