• Title/Summary/Keyword: Comparative Slaughter Method

Search Result 4, Processing Time 0.025 seconds

Modeling net energy requirements of 2 to 3-week-old Cherry Valley ducks

  • Yang, Ting;Yu, Lexiao;Wen, Min;Zhao, Hua;Chen, Xiaoling;Liu, Guangmang;Tian, Gang;Cai, Jingyi;Jia, Gang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1624-1632
    • /
    • 2020
  • Objective: A total of three hundred unsexed ducks were utilized to estimate net energy requirements of maintenance (NEm) and weight gain (NEg) for 2 to 3-week-old Cherry Valley ducks and to establish a model equation to predict NE requirements using the factorial method. Methods: To determine the apparent metabolizable energy (AME) of the diet, fifty 7-day-old ducks at approximately equal body weights (BWs) were randomly assigned into five groups that were fed at different levels (ad libitum, 85%, 75%, 65%, and 55% of ad libitum intake), and the endogenous acid-insoluble ash as indigestible marker. The two hundred and fifty 7-day-old ducks were used for a comparative slaughter experiment. At the beginning of the experiment, ten ducks were sacrificed to determine the initial body composition and energy content. The remaining ducks were randomly assigned into five groups (same as metabolic experiment). Ducks of the ad libitum group were slaughtered at 14 and 21-day-old. At the end of the experiment, two ducks were selected from each replicate and slaughtered to determine the body composition and energy content. Results: The results of the metabolizable experiment showed AME values of 13.43 to 13.77 MJ/kg for ducks at different feed intakes. The results of the comparative slaughter experiment showed the NEm value for 2 to 3-week-old Cherry Valley ducks was 549.54 kJ/kg of BW0.75/d, and the NEg value was 10.41 kJ/g. The deposition efficiency values of fat (Kf) and crude protein (Kp) were 0.96 and 0.60, respectively, and the values of efficiency of energy utilization (Kg) and maintenance efficiency (Km) were 0.75 and 0.88, respectively. Conclusion: The equation for the prediction of NE requirements for 2 to 3-week-old Cherry Valley ducks was the following: NE = 549.54 BW0.75+10.41 ΔW, where ΔW is the weight gain (g).

Estimation of the net energy requirement for maintenance in broilers

  • Liu, Wei;Lin, Chang Hua;Wu, Zheng Ke;Liu, Guo Hua;Yan, Hai Jie;Yang, Hua Ming;Cai, Hui Yi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.849-856
    • /
    • 2017
  • Objective: The net energy requirement for the maintenance ($NE_m$) of broilers was determined using regression models by the indirect calorimetry method (ICM) or the comparative slaughter method (CSM). Methods: A $2{\times}4$ factorial arrangement of treatments including the evaluation method (ICM or CSM) and feed intake (25%, 50%, 75%, or 100% of ad libitum recommended) was employed in this experiment. In the ICM, 96 male Arbor Acres (AA) birds aged d 15 were used with 4 birds per replicate and 6 replicates in each treatment. In the CSM, 116 male AA birds aged d 15 were used. Among these 116 birds, 20 were selected as for initial data and 96 were assigned to 4 treatments with 6 replicate cages and 4 birds each. The linear regression between retained energy (RE) and metabolizable energy intake (MEI) or the logarithmic regression between heat production (HP) and MEI were used to calculate the metabolizable or net energy requirement for maintenance ($ME_m$) or $NE_m$, respectively. Results: The evaluation method did not detect any differences in the metabolizable energy (ME), net energy (NE), and NE:ME of diet, and in the MEI, HP, and RE of broilers. The MEI, HP, and RE of broilers decreased (p<0.01) as the feed intake decreased. No evaluation method${\times}$feed intake interaction was observed on these parameters. The $ME_m$ and $NE_m$ estimated from the linear relationship were 594 and 386 kJ/kg of body weight $(BW)^{0.75}/d$ in the ICM, and 618 and 404 kJ/kg of $BW^{0.75}/d$ in the CSM, respectively. The $ME_m$ and $NE_m$ estimated by logarithmic regression were 607 and 448 kJ/kg of $BW^{0.75}/d$ in the ICM, and were 619 and 462 kJ/kg of $BW^{0.75}/d$ in the CSM, respectively. Conclusion: The NEm values obtained in this study provide references for estimating the NE values of broiler diets.

Evaluation of Amino Acid and Energy Utilization in Feedstuff for Swine and Poultry Diets

  • Kong, C.;Adeola, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.917-925
    • /
    • 2014
  • An accurate feed formulation is essential for optimizing feed efficiency and minimizing feed cost for swine and poultry production. Because energy and amino acid (AA) account for the major cost of swine and poultry diets, a precise determination of the availability of energy and AA in feedstuffs is essential for accurate diet formulations. Therefore, the methodology for determining the availability of energy and AA should be carefully selected. The total collection and index methods are 2 major procedures for estimating the availability of energy and AA in feedstuffs for swine and poultry diets. The total collection method is based on the laborious production of quantitative records of feed intake and output, whereas the index method can avoid the laborious work, but greatly relies on accurate chemical analysis of index compound. The direct method, in which the test feedstuff in a diet is the sole source of the component of interest, is widely used to determine the digestibility of nutritional components in feedstuffs. In some cases, however, it may be necessary to formulate a basal diet and a test diet in which a portion of the basal diet is replaced by the feed ingredient to be tested because of poor palatability and low level of the interested component in the test ingredients. For the digestibility of AA, due to the confounding effect on AA composition of protein in feces by microorganisms in the hind gut, ileal digestibility rather than fecal digestibility has been preferred as the reliable method for estimating AA digestibility. Depending on the contribution of ileal endogenous AA losses in the ileal digestibility calculation, ileal digestibility estimates can be expressed as apparent, standardized, and true ileal digestibility, and are usually determined using the ileal cannulation method for pigs and the slaughter method for poultry. Among these digestibility estimates, the standardized ileal AA digestibility that corrects apparent ileal digestibility for basal endogenous AA losses, provides appropriate information for the formulation of swine and poultry diets. The total quantity of energy in feedstuffs can be partitioned into different components including gross energy (GE), digestible energy (DE), metabolizable energy (ME), and net energy based on the consideration of sequential energy losses during digestion and metabolism from GE in feeds. For swine, the total collection method is suggested for determining DE and ME in feedstuffs whereas for poultry the classical ME assay and the precision-fed method are applicable. Further investigation for the utilization of ME may be conducted by measuring either heat production or energy retention using indirect calorimetry or comparative slaughter method, respectively. This review provides information on the methodology used to determine accurate estimates of AA and energy availability for formulating swine and poultry diets.

Growth Performance, Body Composition and Protein and Energy Utilization of Pigs Fed Ad Libitum Diets Formulated According to Digestible Amino Acid Content

  • Raj, St.;Fandrejewski, H.;Weremko, D.;Skiba, G.;Buraczewska, L.;Zebrowska, T.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.6
    • /
    • pp.817-823
    • /
    • 2000
  • Four groups of six growing gilts each were fed ad libitum diets composed of cereals and soyabean (SBM) or rapeseed (RSM) meal and containing two levels of crude protein: high - 18.0% (RSM-H) and 16.9% (SBM-H) or low - 15.6% (RSM-L) and 15.1% (SBM-L). The diets were balanced by supplementation with crystalline amino acids and contained apparent ileal digestible lysine, methionine, threonine and tryptophan in proportions (1.00:0.32:0.57:0.18) according to CVB (1995). Voluntary feed intake, weight gain and slaughter and chemical body composition of animals were assessed. Protein and energy balances from 25 to 70 kg body weight were calculated by the comparative slaughter method. Protein source had a significant effect on voluntary feed intake; it was 0.12 kg/d lower in pigs fed the SBM than RSM-diets. Pigs fed on the SBM-L diet consumed the least amount of feed (2.17 kg). Daily gain (average, $900{\pm}12.59g$) and feed conversion ratio ($2.54{\pm}0.04kg/kg$) were not statistically affected by source (SMB and RSM) and protein level (high and low). In empty body similar amounts (g/kg) of protein (163 g), water (635 g) and ash (28 g) were found. However, pigs fed the RSM-L diet were fatter than those fed the SBM-L diet (188 vs. 161 g/kg). No statistical differences were observed in daily protein deposition, which on average amounted to $142{\pm}11g$, or carcass characteristics. An improvement of crude protein utilization by 6.3 percentage units was found by decreasing the protein concentration in the diets. Heat production in the body was not significantly affected by the treatments.