• Title/Summary/Keyword: Communication signal recognition

Search Result 194, Processing Time 0.028 seconds

A Novel Recognition Algorithm Based on Holder Coefficient Theory and Interval Gray Relation Classifier

  • Li, Jingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4573-4584
    • /
    • 2015
  • The traditional feature extraction algorithms for recognition of communication signals can hardly realize the balance between computational complexity and signals' interclass gathered degrees. They can hardly achieve high recognition rate at low SNR conditions. To solve this problem, a novel feature extraction algorithm based on Holder coefficient was proposed, which has the advantages of low computational complexity and good interclass gathered degree even at low SNR conditions. In this research, the selection methods of parameters and distribution properties of the extracted features regarding Holder coefficient theory were firstly explored, and then interval gray relation algorithm with improved adaptive weight was adopted to verify the effectiveness of the extracted features. Compared with traditional algorithms, the proposed algorithm can more accurately recognize signals at low SNR conditions. Simulation results show that Holder coefficient based features are stable and have good interclass gathered degree, and interval gray relation classifier with adaptive weight can achieve the recognition rate up to 87% even at the SNR of -5dB.

Performance Improvement of Traffic Signal Lights Recognition Based on Adaptive Morphological Analysis (적응적 형태학적 분석에 기초한 신호등 인식률 성능 개선)

  • Kim, Jae-Gon;Kim, Jin-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2129-2137
    • /
    • 2015
  • Lots of research and development works have been actively focused on the self-driving vehicles, locally and globally. In order to implement the self-driving vehicles, lots of fundamental core technologies need to be successfully developed and, specially, it is noted that traffic lights detection and recognition system is an essential part of the computer vision technologies in the self-driving vehicles. Up to nowadays, most conventional algorithm for detecting and recognizing traffic lights are mainly based on the color signal analysis, but these approaches have limits on the performance improvements that can be achieved due to the color signal noises and environmental situations. In order to overcome the performance limits, this paper introduces the morphological analysis for the traffic lights recognition. That is, by considering the color component analysis and the shape analysis such as rectangles and circles simultaneously, the efficiency of the traffic lights recognitions can be greatly increased. Through several simulations, it is shown that the proposed method can highly improve the recognition rate as well as the mis-recognition rate.

CASA-based Front-end Using Two-channel Speech for the Performance Improvement of Speech Recognition in Noisy Environments (잡음환경에서의 음성인식 성능 향상을 위한 이중채널 음성의 CASA 기반 전처리 방법)

  • Park, Ji-Hun;Yoon, Jae-Sam;Kim, Hong-Kook
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.289-290
    • /
    • 2007
  • In order to improve the performance of a speech recognition system in the presence of noise, we propose a noise robust front-end using two-channel speech signals by separating speech from noise based on the computational auditory scene analysis (CASA). The main cues for the separation are interaural time difference (ITD) and interaural level difference (ILD) between two-channel signal. As a result, we can extract 39 cepstral coefficients are extracted from separated speech components. It is shown from speech recognition experiments that proposed front-end has outperforms the ETSI front-end with single-channel speech.

  • PDF

Multi-Modal Instruction Recognition System using Speech and Gesture (음성 및 제스처를 이용한 멀티 모달 명령어 인식 시스템)

  • Kim, Jung-Hyun;Rho, Yong-Wan;Kwon, Hyung-Joon;Hong, Kwang-Seok
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2006.06a
    • /
    • pp.57-62
    • /
    • 2006
  • 휴대용 단말기의 소형화 및 지능화와 더불어 차세대 PC 기반의 유비쿼터스 컴퓨팅에 대한 관심이 높아짐에 따라 최근에는 펜이나 음성 입력 멀티미디어 등 여러 가지 대화 모드를 구비한 멀티 모달 상호작용 (Multi-Modal Interaction MMI)에 대한 연구가 활발히 진행되고 있다. 따라서, 본 논문에서는 잡음 환경에서의 명확한 의사 전달 및 휴대용 단말기에서의 음성-제스처 통합 인식을 위한 인터페이스의 연구를 목적으로 Voice-XML과 Wearable Personal Station(WPS) 기반의 음성 및 내장형 수화 인식기를 통합한 멀티 모달 명령어 인식 시스템 (Multi-Modal Instruction Recognition System : MMIRS)을 제안하고 구현한다. 제안되어진 MMIRS는 한국 표준 수화 (The Korean Standard Sign Language : KSSL)에 상응하는 문장 및 단어 단위의 명령어 인식 모델에 대하여 음성뿐만 아니라 화자의 수화제스처 명령어를 함께 인식하고 사용함에 따라 잡음 환경에서도 규정된 명령어 모델에 대한 인식 성능의 향상을 기대할 수 있다. MMIRS의 인식 성능을 평가하기 위하여, 15인의 피험자가 62개의 문장형 인식 모델과 104개의 단어인식 모델에 대하여 음성과 수화 제스처를 연속적으로 표현하고, 이를 인식함에 있어 개별 명령어 인식기 및 MMIRS의 평균 인식율을 비교하고 분석하였으며 MMIRS는 문장형 명령어 인식모델에 대하여 잡음환경에서는 93.45%, 비잡음환경에서는 95.26%의 평균 인식율을 나타내었다.

  • PDF

Maximum Entropy-based Emotion Recognition Model using Individual Average Difference (개인별 평균차를 이용한 최대 엔트로피 기반 감성 인식 모델)

  • Park, So-Young;Kim, Dong-Keun;Whang, Min-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1557-1564
    • /
    • 2010
  • In this paper, we propose a maximum entropy-based emotion recognition model using the individual average difference of emotional signal, because an emotional signal pattern depends on each individual. In order to accurately recognize a user's emotion, the proposed model utilizes the difference between the average of the input emotional signals and the average of each emotional state's signals(such as positive emotional signals and negative emotional signals), rather than only the given input signal. With the aim of easily constructing the emotion recognition model without the professional knowledge of the emotion recognition, it utilizes a maximum entropy model, one of the best-performed and well-known machine learning techniques. Considering that it is difficult to obtain enough training data based on the numerical value of emotional signal for machine learning, the proposed model substitutes two simple symbols such as +(positive number)/-(negative number) for every average difference value, and calculates the average of emotional signals per second rather than the total emotion response time(10 seconds).

A deep learning method for the automatic modulation recognition of received radio signals (수신된 전파신호의 자동 변조 인식을 위한 딥러닝 방법론)

  • Kim, Hanjin;Kim, Hyeockjin;Je, Junho;Kim, Kyungsup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1275-1281
    • /
    • 2019
  • The automatic modulation recognition of a radio signal is a major task of an intelligent receiver, with various civilian and military applications. In this paper, we propose a method to recognize the modulation of radio signals in wireless communication based on the deep neural network. We classify the modulation pattern of radio signal by using the LSTM model, which can catch the long-term pattern for the sequential data as the input data of the deep neural network. The amplitude and phase of the modulated signal, the in-phase carrier, and the quadrature-phase carrier are used as input data in the LSTM model. In order to verify the performance of the proposed learning method, we use a large dataset for training and test, including the ten types of modulation signal under various signal-to-noise ratios.

Reduction of Environmental Background Noise using Speech and Noise Recognition (음성 및 잡음 인식 알고리즘을 이용한 환경 배경잡음의 제거)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.817-822
    • /
    • 2011
  • This paper first proposes the speech recognition algorithm by detection of the speech and noise sections at each frame using a neural network training by back-propagation algorithm, then proposes the spectral subtraction method which removes the noises at each frame according to detection of the speech and noise sections. In this experiment, the performance of the proposed recognition system was evaluated based on the recognition rate using various speeches that are degraded by white noise and car noise. Moreover, experimental results of the noise reduction by the spectral subtraction method demonstrate using the speech and noise sections detecting by the speech recognition algorithm at each frame. Based on measuring signal-to-noise ratio, experiments confirm that the proposed algorithm is effective for the speech by corrupted the noise using signal-to-noise ratio.

The Human-Machine Interface System with the Embedded Speech recognition for the telematics of the automobiles (자동차 텔레매틱스용 내장형 음성 HMI시스템)

  • 권오일
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper, we implement the Digital Signal Processing System based on Human Machine Interface technology for the telematics with embedded noise-robust speech recognition engine and develop the communication system which can be applied to the automobile information center through the human-machine interface technology. Through the embedded speech recognition engine, we can develop the total DSP system based on Human Machine Interface for the telematics in order to test the total system and also the total telematics services.

Multiple Plankton Detection and Recognition in Microscopic Images with Homogeneous Clumping and Heterogeneous Interspersion

  • Soh, Youngsung;Song, Jaehyun;Hae, Yongsuk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.35-41
    • /
    • 2018
  • The analysis of plankton species distribution in sea or fresh water is very important in preserving marine ecosystem health. Since manual analysis is infeasible, many automatic approaches were proposed. They usually use images from in situ towed underwater imaging sensor or specially designed, lab mounted microscopic imaging system. Normally they assume that only single plankton is present in an image so that, if there is a clumping among multiple plankton of same species (homogeneous clumping) or if there are multiple plankton of different species scattered in an image (heterogeneous interspersion), they have a difficulty in recognition. In this work, we propose a deep learning based method that can detect and recognize individual plankton in images with homogeneous clumping, heterogeneous interspersion, or combination of both.