• Title/Summary/Keyword: Communication Jamming

Search Result 183, Processing Time 0.017 seconds

Performance Analysis of Monopulse System Based on Third-Order Taylor Expansion in Additive Noise (부가성 잡음이 존재하는 모노펄스 시스템 성능의 3차 테일러 전개 기반 해석적 분석)

  • Ham, Hyeong-Woo;Kim, Kun-Young;Lee, Joon-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.14-21
    • /
    • 2021
  • In this paper, it is shown how the performance of the monopulse algorithm in the presence of an additive noise can be obtained analytically. In the previous study, analytic performance analysis based on the first-order Taylor series and the second-order Taylor series has been conducted. By adopting the third-order Taylor series, it is shown that the analytic performance based on the third-order Taylor series can be made closer to the performance of the original monopulse algorithm than the analytic performance based on the first-order Taylor series and the second-order Taylor series. The analytic MSE based on the third-order Taylor approximation reduces the analytic MSE error based on the second-order Taylor approximation by 89.5%. It also shows faster results in all cases than the Monte Carlo-based MSE. Through this study, it is possible to explicitly analyze the angle estimation ability of monopulse radar in an environment where noise jamming is applied.

Measurement Delay Error Compensation for GPS/INS Integrated System (GPS/INS 통합시스템의 측정치 시간지연오차 보상)

  • Lyou Joon;Lim You-Chol
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • The INS(Inertial Navigation System) provides high rate position, velocity and attitude data with good short-term stability while the GPS(Global Position System) provides position and velocity data with long-term stability. By integrating the INS with GPS, a navigation system can be achieved to Provide highly accurate navigation Performance. For the best performance, time synchronization of GPS and INS data is very important in GPS/INS integrated system But, it is impossible to synchronize them exactly due to the communication and computation time-delay. In this paper, to reduce the error caused by the measurement time-delay in GPS/INS integrated systems, error compensation methods using separate bias Kalman filter are suggested for both the loosely-coupled and the tightly-coupled GPS/INS integration systems. Linearized error models for the position and velocity matching GPS/INS integrated systems are Int derived by linearizing with respect to its time-delay and augmenting the delay-state into the conventional state equations for each case. And then separate bias Kalman Inter is introduced to estimate the time-delay during only initial navigation stage. The simulation results show that the present method is effective enough resulting in considerably less position error.

A Study of Limitation of Service Area by UWB Transmission Jamming in DMB System (DMB 시스템에서 UWB 전파가 서비스에 미치는 영향에 관한 연구)

  • Kim, Dong-Ok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.2
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, n system did research about effect that interference effect with neighborhood single equipment or group equipment gets in DMB service. For this, 2.6425 GHz SDMB(Satellite Digital Multimedia Broadcasting) that a special of electric wave interference is near frequency-band including interference of signal by unnecessary radiation level that is radiated in UWB system, and degree of 3.4125GHz broadcasting relay net that is In-band frequency-band and interference effect that get in service analyzed comparison ud, modulation of broadcasting relay net and interference measurement equipment used Impulse and OFDM methods. Impulse method was $BER=1{\times}10^4$ that broadcasting signal receiption is possible at 1.4m point because interference effect happens from 2m point in SDMB system, and it was $BER=1^{\times}10-4$ that OFDM method receives interference effect from 0.8m point and broadcasting signal receiption is possible at 0.5m point. Also, about gap-filler center frequency, in case of space interval more than 0.01m, there was no interference effect. Therefore, for the electric wave of W system that is small output applies to system without interference effect in DMB service, confirmed that UWB system of OFDM method is less interference effect than UWB system of impulse method.

  • PDF