• 제목/요약/키워드: Common rail diesel engine

검색결과 217건 처리시간 0.03초

디젤 엔진의 인젝터 설계 변수가 노즐 코킹에 미치는 영향 분석 (Effects of Injector Design Parameter on Nozzle Coking in Diesel Engines)

  • 김용래;송한호
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.140-145
    • /
    • 2012
  • Recent common-rail injector of a diesel engine needs more smaller nozzle hole to meet the stringent emission regulation. But, small nozzle hole diameter can cause nozzle coking which is occurred due to the deposits of post-combustion products. Nozzle coking has a negative effect on the performance of fuel injector because it obstructs the fuel flow inside a nozzle hole. In this study DFSS (Design for six sigma) method was applied to find the effect of nozzle design parameter on nozzle coking. Total 9 injector samples were chosen and tested at diesel engine. The results show that nozzle hole diameter and K-factor have more effect on nozzle coking than A-mass and hole length. Large hole diameter and A-mass, small hole length and K-factor give more positive performance on nozzle coking in these experimental conditions. But, a performance about nozzle coking and exhaust gas emission shows the opposite tendency. Further study is needed to find the relation between nozzle coking and emission characteristic for the optimization of injector nozzle design.

커먼레일방식 디젤기관의 경유와 바이오디젤유의 혼합율에 따른 배기배출물 특성 (The Emission Characteristics on Blending Ratios of Biodiesel Fuel and Diesel Fuel in a Common Rail Type Diesel Engine)

  • 최승훈;오영택;변종원
    • Journal of Biosystems Engineering
    • /
    • 제34권2호
    • /
    • pp.77-81
    • /
    • 2009
  • Our nature is facing with serious problems related to the air pollution from automobiles in these days. Specially, the exhaust emissions from the diesel engine are recognized as a main cause influencing the environment severly. In this study, the potential possibility of biodiesel fuel is investigated as an alternative fuel for a naturally aspirated CRDi type diesel engine. The smoke emission of biodiesel fuel 5 vol-% was reduced by approximately 40% at 3000 rpm and full load in comparison with diesel fuel. On the other hand, the power, torque and brake specific energy consumption didn't show significant differences. NOx emission of biodiesel fuel was, however, increased compared with commercial diesel fuel.

직접분사식 압축착화엔진에서 Diesel-DME 혼합연료의 연소 및 배기특성에 관한 연구 (A Study on Combustion and Emission Characteristics of Diesel-DME Blended Fuels in D.I Compression-Ignition Engine)

  • 정재훈;임옥택;전종업;이상욱;표영덕;이영재;서호철
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.530-537
    • /
    • 2012
  • This work experimentally investigates that Diesel-DME blended fuel influences combustion characteristics and emissions (NOx, CO, HC, smoke) in a single-cylinder DI diesel engine. Diesel is used as a main fuel and DME is blended for the use of its quick evaporating characteristics. Diesel and DME are blended by the method of weight ratio. Weight ratios for Diesel and DME are 95:5 and 90:10 respectively and the both ratios have been used altogether in blended fuel. The experiments are conducted in this study single cylinder engine is equipped with common rail and injection pressure is 700 bar at 1200 rpm. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions. DME is compressed to 15 bar by using nitrogen gas thus it can be maintained the liquid phase. In this study, different system compared others paper is common rail system, also there is combustion and emission about compared DME and diesel fuel. It is expected to be utilized about blended fuel.

플라즈마 EGR 조합시스템 터보 인터쿨러 ECU 커먼레일 디젤기관의 성능 및 $NO_x{\cdot}THC$ 배출물 특성에 관한 연구 (A Study on Characteristics of Performance and $NO_x{\cdot}THC$ Emissions in Turbo Intercooler ECU Common-rail Diesel Engines with a Combined Plasma EGR System)

  • 배명환;구영진;이봉섭
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.10-21
    • /
    • 2006
  • The aim in this study is to develop the combined EGR system with a non-thermal plasma reactor for reducing exhaust emissions and improving fuel economy in turbo intercooler ECU common-rail diesel engines. At the first step, in this paper, the characteristics of performance and $NO_x{\cdot}THC$ emissions under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with a combined plasma exhaust gas recirculation(EGR) system operating at three kinds of engine speeds. The EGR system is used to reduce $NO_x$ emissions, and the non-thermal plasma reactor and turbo intercooler system are used to reduce THC emissions. The plasma system is a flat-to-flat type reactor operated by a plasma power supply. The fuel is sprayed by pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that the specific fuel consumption rate with EGR is increased, but the fuel economy is better than that of mechanical injection type diesel engine as compared with the same output. Results show that $NO_x$ emissions are decreased, but THC emissions are increased, as the EGR rate is elevated. $NO_x$ and THC emissions are also slightly decreased as the applied electrical voltage of the non-thermal plasma reactor is elevated. Thus one can conclude that the influence of EGR in $NO_x$ and THC emissions is larger than that of the non-thermal plasma reactor, but THC emissions are greatly influenced by the non-thermal plasma reactor as the EGR rate is elevated.

바이오 디젤 혼합비에 따른 커먼레일 인젝터의 분사 및 내구특성에 관한 실험 연구 (An Experimental Study on Injection and Durability Characteristics of Common-rail Injector According to mixture Ratio of Bio-diesel)

  • 임석연;김태범;유상석
    • 한국분무공학회지
    • /
    • 제16권1호
    • /
    • pp.44-50
    • /
    • 2011
  • An object of this study is to understand the correlation of injection characteristics and injector dimensions according to biodiesel mixture. The Injection characteristics of different types of common-rail injectors are the number of nozzle holes (5~8), jet cone angle ($146^{\circ}{\sim}153^{\circ}$), hydraulic flow rate (830~900 ml/min) injection quantity and response time. Prior to characteristic experiment, the reference injector has been selected in 6 candidates injectors under the investigation of injected quantity according to the biodiesel mixture so that injector type can be determined. The injector is used for the characteristic experiment which varied the various operating conditions including pressure 23 MPa, 80 MPa, 160 MPa, changing in injection duration 0.16 ms~1.2 ms and even mixture ratio. The result shows that the nozzle hole number and cone angle influence the injection quantity much more than nozzle hole diameter at low injection pressure and the nozzle hole diameter at high injection pressure, post injection duration.

CNG/Diesel Dual-fuel 엔진의 CNG 혼합율에 따른 엔진성능 및 배출가스 특성에 관한 연구 (The Engine Performance and Emission Characteristics of CNG/Diesel Dual-fuel Engine by CNG Mixing Ratio)

  • 최건호;임옥택
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.38-43
    • /
    • 2011
  • A CNG/diesel dual-fuel engine uses CNG as the main fuel and injects a small amount of diesel as an ignition priming. This study proposed the modification of the existing diesel engine into a dual-fuel engine that injects diesel with a high pressure by common rail direct injection (CRDI) and by injecting CNG at the intake port for premixing. And experiment was progressed for understanding about effect of CNG mixing ratio. The CNG/diesel dual-fuel engine showed equally satisfactory coordinate torque and power regardless of CNG mixing ratio. The PM emission was low at any CNG mixing ratio because of very small diesel pilot injection. In case of NOx and HC, high CNG mixing ratio showed low NOx and HC emissions at low speed. At medium & high speed, low CNG mixing ratio showed low NOx and HC emissions. Therefore, it would be optimized by controlling CNG mixing ratio.

디젤 엔진에서 GTL(Gas to Liquid) 연료의 배출물 특성에 관한 연구 (Emission Characteristics of GTL(Gas to Liquid) Fuel in Diesel Engine)

  • 이용규;문건필;최교남;정동수;김병준;차경옥
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.84-91
    • /
    • 2008
  • Due to increasing need for better emission characteristics and lower fuel consumption rate in automotive engines, alternative fuels are drawing more attentions recently. The GTL (gas to liquid) is the one of most favored candidates. In this study, emission characteristics are compared between diesel and GTL fuel in commercial 2.0 liter diesel engine and vehicle with CRDi(Common Rail Direct injection) system. The effects of injection timings on emission and fuel consumption rate are compared at various engine speeds and loads. Noticeable reduction in HC, CO and PM emissions are observed due to higher cetane number and low sulfur and aromatic contents in GTL. On the trade-off curve of NOx and PM(Particulate matter) GTL showed much more benefits than diesel, where about 30% of PM mass decreased at the same operating conditions. On CVS 75 mode test in vehicle, GTL showed an excellent emission enhancement, in which 50% of HC, 21% of PM, and 12% of NOx engine-out emissions are decreased compared to ULSD(Ultra low sulfur diesel) fuel.

전자제어 커먼레일 압축착화엔진용 고압연료펌프의 DME 적용 성능에 관한 연구 (A Study on the DME Application Performance of a High Pressure Fuel Pump for an Electric Controlled Common-rail Compression Ignition Engine)

  • 정재우;김남호;강정호;박상욱;이호길;최승규
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.132-140
    • /
    • 2009
  • Recently, the interest in the development of high efficiency Diesel engine technology using alternative fuel has been on the rise and related studies are being performed. Therefore, the DME(Dimethyl Ether), an oxygen containing fuel as an alternative fuel for light oil that can be used for diesel engines since it generates very little smoke. But it is unavoidable that the modification of a fuel supply system in an engine to application of the DME fuel because of DME fuel properties. So, in this study, a DME high pressure pump for a common-rail fuel supply system has been composed and the test results of the pump have been presented. As the results of the tests, it is confirmed that DME pump inlet pressure, pump speed and common-rail pressure effects on the volumetric efficiencies of the pump. Finally, it is defined that the optimum plunger volume of a DME pump has to be extended to the minimum 150% compared to a Diesel pump plunger volume considering DME fuel properties and volumetric efficiencies characteristics at same specifications of the high pressure pump.

Diesel-DME 혼합연료의 분무 및 엔진 연소특성에 관한 연구 (A Study on the Characteristics of Spray and Engine Combustion of Diesel-DME Blended Fuel)

  • 양지웅;정재훈;임옥택
    • 한국분무공학회지
    • /
    • 제18권2호
    • /
    • pp.73-80
    • /
    • 2013
  • The purpose of this study was compared the spray, combustion and emissions (NOx, CO, HC, smoke) characteristics of a typical fuel (100% Diesel, DME) and Diesel-DME blended fuel in a Constant Volume Chamber (CVC) and a single-cylinder DI diesel engine. Spray characteristics were investigated under various ambient and fuel injection pressures when the Diesel-DME blended ratio is varied. The parameters of spray sturdy were spray shape, penetration length, and spray angle. Common types of injectors having seven holes and made by Bosch were used. As of use, the typical fuel (100% Diesel, DME) and the blended fuel by mixture ratio 95:5, 90:10 (Diesel:DME) were used. The Injection pressure was fixed by 70.1MPa, when the ambient Pressure was varied 0.1, 2.6 and 5.1 MPa. The combustion experiments was conducted with single cylinder engine equipped with common rail injection system. injection pressure is 70 MPa. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions.