• Title/Summary/Keyword: Common exhaust system

Search Result 62, Processing Time 0.02 seconds

Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition (수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향)

  • Jeon, Jeeyeon;Park, Hyeonwook;Bae, Choonsik
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF

Comparison Analysis of Dynamic Characteristics of Servo-hydraulic Piezo-driven Injector between 3-way and Bypass-circuit Type (3-way형과 Bypass형 서보유압 피에조 인젝터의 구동특성 비교)

  • Jo, Insu;Jeong, Myoungchul;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.169-175
    • /
    • 2013
  • CRDi technology of diesel engine was developed from in the early 2000s due to a need to increase fuel efficiency and environment care. Especially, high-pressure fuel injection system in CRDi system which has a fuel injection unit including an injector, a fuel pump and common-rail, etc. becomes possible to make the exhaust gas clean as well as power improvement. In this study, comparison of dynamic characteristics of servo-hydraulic piezo-driven injector with 3-way and bypass-circuit type was analyzed by using the AMESim code. As results of this study, it found the bypass-circuit inside servo-hydraulic piezo injector can cause a faster injection response than that of the 3-way type. Also it was shown that bypass-circuit type had better control capability due to hydraulic bypass system.

The Experimental Research of LNT for 3L-DME Engine (3리터급 DME 엔진용 LNT 후처리 장치 연구)

  • Jang, Jinyoung;Lee, Youngjae;Pyo, Youngduk;Cho, Chongpyo;Woo, Youngmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.117-122
    • /
    • 2013
  • This study is aimed to develop LNT(Lean NOx Trap) aftertreatment system for DME engine. Modified DME engine, which was changed from diesel to current DME engine, is used for this research and is equipped with common rail type injector and fuel supplying system. LNT system has reductant injector. DME is also used as reduction agent. For this research, reduction agent injection time width and interval were varied. And also, swirler was used to improve homogeneity of reducing agent in exhaust pipe. The reduction rate of NOx by LNT was increased by longer injection width, short interval and swirler. The maximum diminution of NOx by LNT was over 85%.

A Study on Characteristics of Performance and Emission by CRDI Engine's Injection Strategy (커먼레일 디젤기관에서 분사전략에 따른 성능 및 배출가스에 관한 연구)

  • Eom, Dong-Seop;Ko, Dong-Kyun;Ra, Wan-Yong;Lee, Seang-Wock
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.134-139
    • /
    • 2011
  • Recent research has focused on engine combustion technology as well as application of after-treatment in order to comply with emission regulation. However, it is much more efficient way to control emissions from engine itself and furthermore research on engine control will provide the direction of after-treatment technology in future. Furthermore, emission standard regulation for passenger diesel vehicles has been stringent compared to others and nano-particles will be included in EURO6 regulation in Europe and similar emission standard will be introduced in Korea. A 3.0 liter high speed diesel engine equipped with by CRDI system of 160MPa injection pressure, and an intake/exhaust system of V type 6 cylinder turbo-intercooler was applied. The injection duration and injection quantity, pilot injection types which are related to CRDI and air/fuel ratio control applied by EVGT were changed simultaneously. Standard experiment procedure constituted dilution apparatus and CPC system to collect nano-particles and these test results were compared with regulated materials of CO, HC, NOx and investigated their relations and characteristics of nano-particles.

Experimental study on the optimum pulse jet cleaning conditions of a rectangular bag-filter system (사각형 여과집진기 충격기류 시스템의 최적탈진조건에 관한 실험적 연구)

  • Piao, Cheng Xu;Kim, Tae Hyeung;Li, Xiao Yu;Ha, Hyun Chul;Jung, Jae Hun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.3
    • /
    • pp.189-203
    • /
    • 2008
  • Cylindrical bag filter system with pulse jet cleaning has been the most common device to control particle laden exhaust gas from the various industrial processes. But, it has many shortcomings due to particle reattachment and frequent bag rupture. In recent years, rectangular type bag filter system has been developed to overcome the problems associated with the cylindrical system. However, not many studies about the rectangular system were not done, compared to the cylindrical system. In this study, the optimum pulse jet cleaning conditions were thus tested by the series of experiments. The factors tested in this study are pulse distance, pulse pressure, pulse duration, the number of holes for pulsing and bag materials. A single bag ($1,500mmL{\times}50mmW{\times}300mmH$) system and a multi-bags (3 bags in a row) were tested separately. The highest removal efficiency with a single bag system was found at the conditions with pulse distance of 10cm, pulse pressure of $3kg/cm^2$, pulse duration of 0.3s, pulse jet number of 6 and Polyester bag. With the multi-bags system, the best cleaning conditions were found at the bag interval of 20cm with the simultaneous pulsing and the bag interval of 15cm with the serial pulsing.

A Study on No-Fault Arbitration in U.S.'s Automobile Insurance - Focus on the Case of New York State - (미국 자동차보험에 있어서 무과실보험의 중재에 관한 고찰 - 미국 뉴욕주를 중심으로 -)

  • Kim, Ji-Ho
    • Journal of Arbitration Studies
    • /
    • v.22 no.1
    • /
    • pp.89-110
    • /
    • 2012
  • No-fault automobile insurance system is a statutory scheme to provide automobile accident victims with compensation for certain expenses arising from personal injuries occurring in car accidents. New York State has enacted No-Fault Law to ensure that the injured in automobile accidents be paid rapidly by their own insurance company for medical expenses, lost earnings regardless of fault, replacing common law system of reparation for personal injuries under tort law. Its primary purpose is to facilitate compensation without the need to exhaust time-consuming litigation over establishing the existence of fault and the extent of damages. No-Fault Law allows arbitration as a method for settling the no-fault insurance disputes. No-fault arbitration, however, differs in a significant way from general arbitration system. First, No-Fault Law provides the parties with the option to submit any dispute involving no-fault automobile insurance to arbitration. Second, no-fault arbitration attempts to speed its procedure incorporating various methods. Third, the parties are required to seek review of arbitral awards by master arbitrator prior to seeking court's review. Fourth, the parties have right to bring de novo action in court if master arbitrator's award exceeds $5,000. Given the current state of law in Korea, it may not be easy to introduce no-fault arbitration system into Korea in the context of automobile insurance disputes settlement as its law has a long-established reparation system based on tort liability and no-fault arbitration system has its own features that differ from general arbitration system. Nonetheless, it could be suggested that no-fault arbitration be introduced in other fields which require speedy dispute resolution and a third party's decision to settle the disputes. The optional right of submitting disputes to arbitration as provided by No-Fault Law of New York State may offer a ground to supprot the effectiveness of an optional arbitration agreement.

  • PDF

Estimates of the Number of Workers Exposed to Diesel Engine Exhaust in South Korea from 1993 to 2013

  • Choi, Sangjun;Park, Donguk;Kim, Seung Won;Ha, Kwonchul;Jung, Hyejung;Yi, Gwangyong;Koh, Dong-Hee;Park, Deokmook;Sun, Oknam;Uuksulainen, Sanni
    • Safety and Health at Work
    • /
    • v.7 no.4
    • /
    • pp.372-380
    • /
    • 2016
  • Background: The aim of this study was to estimate the number of workers exposed to diesel engine exhaust (DEE) by industry and year in the Republic of Korea. Method: The estimates of workers potentially exposed to DEE in the Republic of Korea were calculated by industry on the basis of the carcinogen exposure (CAREX) surveillance system. The data on the labor force employed in DEE exposure industries were obtained from the Census on Establishments conducted by the Korea National Statistical Office from 1993 to 2013. The mean values of prevalence rates adopted by EU15 countries were used as the primary exposure prevalence rates. We also investigated the exposure prevalence rates and exposure characteristics of DEE in 359 workplaces representing 11 industries. Results: The total number of workers exposed to DEE were estimated as 270,014 in 1993 and 417,034 in 2013 (2.2% of the total labor force). As of 2013, the industry categorized as "Land transport" showed the highest number of workers exposed to DEE with 174,359, followed by "Personal and household services" with 70,298, "Construction" with 45,555, "Wholesale and retail trade and restaurants and hotels" with 44,005, and "Sanitation and similar services" with 12,584. These five industries, with more than 10,000 workers exposed to DEE, accounted for 83% of the total DEE-exposed workers. Comparing primary prevalence rates used for preliminary estimation among 49 industries, "Metal ore mining" had the highest rate at 52.6%, followed by "Other mining" with 50.0%, and "Land transport" with 23.6%. Conclusion: The DEE prevalence rates we surveyed (1.3-19.8%) were higher than the primary prevalence rates. The most common emission sources of DEE were diesel engine vehicles such as forklifts, trucks, and vans. Our estimated numbers of workers exposed to DEE can be used to identify industries with workers requiring protection from potential exposure to DEE in the Republic of Korea.

The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

  • Lee, Hyungmin;Jeong, Yeonhwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.403-411
    • /
    • 2012
  • This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC) had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF) at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from $25^{\circ}C$ to $300^{\circ}C$, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

A Descriptive Study of Occupational Health Services in Self-employed Enterprises (Nanoscale Enterprises), Shiraz, Iran

  • Jahangiri, Mehdi;Rostamabadi, Akbar;Yekzamani, Parvaneh;Abadi, Bahare Mahmood;Behbood, Fariborz;Ahmadi, Seyyedeh Fatemeh;Momeni, Zahra
    • Safety and Health at Work
    • /
    • v.7 no.4
    • /
    • pp.317-321
    • /
    • 2016
  • Background: This study was conducted with aim of providing an overview of the current status of occupational health services and identifying the most common harmful agents at workplaces of Iranian self-employed enterprises (Nano-Scale Enterprises). Methods: A cross-sectional study was performed among a random sample including 1,758 employees engaging in self-employed enterprises with 5 and less employees. Results: Coverage of occupational health surveillance was very poor, annual health examinations were been conducted only for 64 (3.64%) of males and 31 (1.76%) of females, and occupational health trainings were not included of the services at all. Personal Protective Equipment were available in 462 (26.3%) of the enterprises. only in 0.4% of the enterprises working processes were been equipped by a local exhaust ventilation system. Difficult postures were the most common (81.5%) adverse working conditions. Conclusion: This study revealed a poor level of the implementation of occupational health services in Iranian self-employed enterprises. Based on the findings, providing basic training on the occupational health, more enforcing in conduction of health examinations and providing PPE, and taking appropriate strategies aimed at eliminating or minimizing work environment harmful agents are the major factor that should be considered to improve the level of occupational health services among the studied enterprises.

Experimental Research on Lubricant Oil in Dual Fuel Medium-Speed Engines (중속용 Dual Fuel엔진의 윤활유에 관한 실험적 연구)

  • Hong, Sung-Ho;Park, Chang-Hoon;Park, Jungdo;Eddie, Chen
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.82-87
    • /
    • 2016
  • We performed an experimental research on lubricant oil in dual fuel medium-speed engines. It is important to select the appropriate lubricant oil because it could significantly affect engine lifetime and performance. We generally recommend the selection of the lubricant oil according to the fuel grades as contents in the project guide. However, it is a considerable challenge for shipyards to implement this concept because of the lack of space to install the complicated lubricating oil system for dual fuel engines. Therefore, we determine the adaptability of one-common lubricant oil for HiMSEN dual fuel engine through this experimental research. To check abnormality in gas mode operation and durability of engine components when a lubricating oil with high BN (base number) is used, overhaul inspections and lubricant oil analysis are carried out two times, and four times, respectively, during an operation of approximately 300 h. We investigated the variations in kinematic viscosity, base number, element quantity, pentane insoluble and sulfated ash in lubricant oil analysis. Moreover, we also investigated whether the deposit formation or wear occurred in various bearings, injectors, exhaust valves, intake valves, piston rings and so on through the overhaul inspections. There are no problems in the lubricant analysis and the overhaul inspections. Through the experimental research, we confirm that one-common lubricant oil should be selected according to the higher sulfur content of fuel oil in dual fuel engines.