• Title/Summary/Keyword: Commercial truck

Search Result 71, Processing Time 0.037 seconds

Safety Assessment on Dispersion of BOG in LNG Fueling Station (LNG 자동차 충전소에서 BOG 확산에 따른 안전성평가 연구)

  • Lee, Seung Hyun;Kang, Seung Kyu;Lee, Young Soon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.76-82
    • /
    • 2012
  • A diesel-Liquefied natural gas(LNG) combustion engine truck fleet demonstration project had been carried out and commercial expansion project was launched. The key issues of these projects are the safety of LNG fuel station and the reduction of natural gas relief. When LNG is fueled to LNG vehicles the heat is input in the LNG system. The LNG in the fueling system was boiled and the vapor of LNG is vented through the safety devices. The temperature of the vapor of LNG is $-108^{\circ}C$ and density is heavier than air. It can be dispersed to downside of the fuel station. The safety evaluation is carried out using CFD program and risk assessment program for the vapor of LNG in the LNG vehicle fuel station. The hazards are identified and suggested the operation instruction to reduce the relief of LNG vapor.

A Fundamental Study on the Control of Ride Comfort and Attitude for In-wheel Motor Vehicles (인휠모터 구동차량의 승차감 및 자세제어를 위한 기초적 연구)

  • Kim, Y.R.;Park, C.;Wang, G.N.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.91-97
    • /
    • 2012
  • It is being accelerated to develop environment-friendly vehicles to solve problems on the energy and environment of earth. The electric driving motor commonly installed in these vehicles has the excellent control capability such as fast response and accurate generation to torque control command. Especially, in-wheel motor has the additional merit such as independently driving each wheel in vehicle. Recently, being developed various control algorithm to enhance the safety and stability of vehicle motion using actively the merits of in-wheel motor. In addition to that, being issued the possibility of enhancing the ride comfort and attitude of vehicle motion such as pitching and rolling. In this paper, investigate the theoretical relationship between the braking/driving force and the motion of sprung mass of vehicle and propose the control method to enhance the ride comfort and attitude of vehicle motion. The proposed control method is proved through the simulation with vehicle model provided by TruckSim software which is commercial one and specializes in vehicle dynamics.

Design Parameter Analysis of the Proportional Control Valve for Wheel-Loader Automatic Transmission (휠로더 자동변속기용 비례 제어 밸브의 설계 특성 해석)

  • Park, Young-Jun;O, Joo-Young;Yun, Ung-Kwon;Lee, Guen-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.27-35
    • /
    • 2010
  • A loader used for uploading materials into truck is a kind of construction equipment. Mainly, a wheel loader is applied to construction work. Recently, an automatic transmission for the wheel loader is used to help drivers get the repetitive works done comfortably. It is composed of geartrain, clutch pack, hydraulic control system and TCU. Especially, a high-performance proportional control valve and its control algorithm is demanded to achieve the shift quality during a change of speed. In this paper, the commercial package program was used in order to justify model of the proportional control valve and simulate it. Steady-state and dynamic characteristics of PCV were analyzed to classify attractive forces and hydraulic control characteristics. This model also was verified the validity compared to the experimental result. Using the developed model, performances of PCV were predicted as studying design parameters.

Estimation of the Temporal and Spatial Distribution of Anthropogenic Heat in Daegu (대구지역 인공열의 시공간적 분포 추정에 관한 연구)

  • 안지숙;김해동;홍정혜
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1045-1054
    • /
    • 2002
  • Urban atmospheric conditions are usually settled as warmer, drier and dirtier than those of rural counterpart owing to reduction of green space and water space area heat retention in surfaces such as concrete and asphalt, and abundant fuel consumption. The characteristics of urban climate has become generally known as urban heat island. The purpose of this study is to investigate the temporal and spatial distribution of the heat emission from human activity, which is a main factor causing urban heat island. In this study, the anthropogenic heat fluxes emitted from vehicles and constructions are estimated by computational grid mesh which is divided by 1km $\times$ 1km. The anthropogenic heat flux by grid mesh can be applied to a numerical simulation model of the local circulation model. The constructions are classified into 9 energy-consumption types - hospital, hotel, office, department store, commercial store, school, factory, detached house and flat. The vehicles classified into 4 energy-consumption types - car, taxi, truck and bus. The seasonal mean of anthropogenic heat flux around central Daegu exceeded $50 W/m^2$ in winter. The annual mean anthropogenic heat flux exceeded $20 W/m^2$. The values are nearly equivalent to the anthropogenic heat flux in the suburbs of Tokyo, Japan.

Estimation of GHG Emissions Reduction and Fuel Economy Improvement of Heavy-Duty Trucks by Using Side Skirt and Boat Tail (사이드스커트와 보트테일을 이용한 대형화물차량의 연비개선 효과 및 온실가스 감축량 추정)

  • Her, Chul haeng;Yun, Byoeng gyu;Kim, Dae wook
    • Journal of Climate Change Research
    • /
    • v.7 no.2
    • /
    • pp.177-184
    • /
    • 2016
  • Recently, the need for technology development of commercial vehicle fuel consumption has emerged. Fuel economy improvement of transport equipment and transportation efficiency, and increasing attention to the logistics cost reduction measures. Increasing attention to the logistics cost reduction measures by fuel economy improvement of transport equipment and transportation efficiency. In this study, we have installed aerodynamic reduction device (side skirt, boat tail) to 14.5 ton cargo trucks and 45 ft tractor-trailers. And the fuel consumption was compared installed before and after. Fuel economy assessment for the aerodynamic reduction value device was tested by modifying the SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II test in according domestic situation. Greenhouse gas reductions were calculated in accordance with the scenario, including fuel consumption test results. When the 14.5 ton cargo trucks has been equipped with side skirts and boat tail, it confirmed the improvement in fuel efficiency of 4.72%. One Heavy-duty truck's the annual greenhouse gas reductions value are $6.86ton\;CO_2\;eq$. And if applying the technology to more than 50% of registered 15 ton trucks, greenhouse gas reductions are calculated as $686,826ton\;CO_2\;eq./yr$.

Analysis of Motor Carrier Crash Risk with Driver Hours of Service (화물자동차 운전자의 운행시간에 따른 사고위험도 분석)

  • Park, Sang-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.21-27
    • /
    • 2010
  • Management of driver hours of service (HOS) for commercial vehicle operators has been a continual safety challenge. One of the more critical issues to government and motor carriers is fatigue and fatigue-related accidents. To reduce truck drivers’fatigue-related accident risk in other countries, the government issued the HOS regulations. However, korea government does not have any HOS regulations. The objective of this research gives the clues that korea should have the HOS regulation to reduce truck drivers’fatigue-related accident risk. This study examines the HOS regulation over other countries and conducts relative accident risk analysis using the real data from 3 freight companies. The data set includes 231 accident involved drivers and 462 non-accident drivers. Therefore, the size of the total data set is 693 drivers. One of the most important aspects of early studies of safety and HOS was the need to characterize continuous driving by using the notion of "survival". Subsequent research used a data replication scheme and logistic regression to capture the survival effect. This study uses time-dependent logistic regression. The test of significance between parameters indicates that the first three hours are almost the same risk. In the 10th hour of driving, the risk was more than 2.2times that in the baseline first hour. In conclusion, as driving time goes on, the crash risk increases.

Intelligent 3D packing using a grouping algorithm for automotive container engineering

  • Joung, Youn-Kyoung;Noh, Sang Do
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.140-151
    • /
    • 2014
  • Storing, and the loading and unloading of materials at production sites in the manufacturing sector for mass production is a critical problem that affects various aspects: the layout of the factory, line-side space, logistics, workers' work paths and ease of work, automatic procurement of components, and transfer and supply. Traditionally, the nesting problem has been an issue to improve the efficiency of raw materials; further, research into mainly 2D optimization has progressed. Also, recently, research into the expanded usage of 3D models to implement packing optimization has been actively carried out. Nevertheless, packing algorithms using 3D models are not widely used in practice, due to the large decrease in efficiency, owing to the complexity and excessive computational time. In this paper, the problem of efficiently loading and unloading freeform 3D objects into a given container has been solved, by considering the 3D form, ease of loading and unloading, and packing density. For this reason, a Group Packing Approach for workers has been developed, by using analyzed truck packing work patterns and Group Technology, which is to enhance the efficiency of storage in the manufacturing sector. Also, an algorithm for 3D packing has been developed, and implemented in a commercial 3D CAD modeling system. The 3D packing method consists of a grouping algorithm, a sequencing algorithm, an orientating algorithm, and a loading algorithm. These algorithms concern the respective aspects: the packing order, orientation decisions of parts, collision checking among parts and processing, position decisions of parts, efficiency verification, and loading and unloading simulation. Storage optimization and examination of the ease of loading and unloading are possible, and various kinds of engineering analysis, such as work performance analysis, are facilitated through the intelligent 3D packing method developed in this paper, by using the results of the 3D model.

Economic and Technological Feasibility Study on Pre- and Post-Consumer Recycling of Disposable Diaper in Korea (국내 폐 기저귀 재활용의 경제적, 기술적 타당성 분석)

  • Ahn, JoongWoo;Kim, YoungSil
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.43-50
    • /
    • 2015
  • An extensive literature survey and personal communication with relevant experts made it possible to understand economic and technical feasibility of disposable diaper recycling. Commercial level of soiled diaper recycling technology is currently available from a Dutch company, Knowaste Co., who owns a proprietary separation technology of the pulps, plastics and super absorbing polymer (SAP). In Korea, on the other hand, pre-consumer diaper recycling technology without material separation at its infancy converts manufacturing scraps into refuse plastic fuel (RPF), container/truck cargo boards or automobile boards/sheets. Although previous studies on feasibility of post-consumer recycling in Korea showed mutually contradictory implication, it was found out in this research that significantly positive economic feasibility can be obtained with pre-consumer diaper recycling. Subsequent recycling R&D including pre-consumer scrap and policy support may expedite 'Establishment of Sustainable Society.

Local Deformation Analysis of the Orthotropic Steel Bridge Deck Due to Wheel Loadings Using FSM and FEM (윤하중에 의한 강바닥판 교면포장의 종방향균열 관련 수치해석법 개발)

  • Jeong, Jin Seok;Jung, Myung Rag;Ock, Chang Kwon;Lee, Won Tae;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.243-251
    • /
    • 2016
  • Longitudinally structural cracks are sometimes observed in the pavement on steel plate deck bridges because traffic truck loadings can cause large local deformations of the thin deck plate stiffened by longitudinal and transverse beams. In this study, an improved finite strip method using flat-shell strip, prism, and link elements is presented to investigate local deformations of steel decks with pavements in which flexural and torsional stiffness effects of thin floor beams are rigorously taken into account. A simplified deck model extracted from steel plate-girder bridges is analyzed using the developed FSM and the commercial FE program, ABAQUS and also, their numerical results are compared and discussed.

Development and performance evaluation of SB3-level roadside barrier for highway transition zone (고속국도용 SB3등급 전이구간 방호울타리 개발 및 성능평가)

  • Lee, Jungwhee;Cho, Jong-Seok;Lee, Jae-Hyuk
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.13-21
    • /
    • 2017
  • PURPOSES : In this research, an SB3-level roadside barrier for a highway transition zone that meets the newly established guide Installation and Management Guide for Roadside Safety Appurtenance is developed. Its performance is evaluated by a numerical simulation and real-scale vehicle impact test. METHODS : The commercial explicit dynamic software LS-DYNA is utilized for impact simulation. An FE model of a passenger vehicle developed and released by the National Crash Analysis Center (NCAC) at George Washington University and a heavy goods vehicle (HGV) model developed by the TC226/CM-E Work Group are utilized for impact simulation. The original vehicle models were modified to reflect the conditions of test vehicles. The impact positions of the passenger vehicle and truck to the transition guardrail were set as 1/2 and 3/4 of the transition region, respectively, according to the guide. RESULTS : Based on the numerical simulation results of the existing transition barrier, a new structural system with improved performance was suggested. According to the result of a numerical simulation of the suggested structural system, two sets of transition barriers were manufactured and installed for real-scale vehicle impact tests. The tests were performed at a test field for roadside safety hardware of the Korea Highway Corporation Research Institute. CONCLUSIONS : The results of both the real-vehicle impact tests and numerical simulations of the developed transition barrier satisfied the performance criteria, and the results of numerical simulation showed good correlation with the test results.