• 제목/요약/키워드: Commercial catalyst

검색결과 289건 처리시간 0.025초

상용 디젤엔진용 산화촉매의 배출가스 저감 특성 (Emission Characteristics of Diesel Oxidation Catalysts for a Commercial Diesel Engine)

  • 최병철;이춘희;박희주;정명근;권정민;신병선;김상수
    • 동력기계공학회지
    • /
    • 제6권2호
    • /
    • pp.18-23
    • /
    • 2002
  • Recently, as people pay attention to the environmental pollution, the emission of diesel engine has become a serious problem. Diesel Oxidation Catalysts(DOC) were experimentally investigated for the purification of pollutants exhaust emission from the diesel engine. In this study, the conversion efficiency of exhaust gas was investigated with various washcoat materials of the DOC. It was formed that CO conversion efficiency depended on temperature, but THC conversion was dominated by temperature and space velocity. Conversion efficiency of THC and CO increased with the addition of ZSM-5 in the washcoat, whereas these conversion efficiency decreased by adding Nd and Ba additives. $V_2O_5$ additive had the thermal stability for high temperature. Thermal durability of the catalyst was improved as increase of $V_2O_5$ additive.

  • PDF

혼합폐플라스틱 열분해 왁스오일의 고급화 연구 (A Study of Upgrading of Pyrolysis Wax Oil Obtained from Pyrolysis of Mixed Plastic Waste)

  • 이경환;남기윤;송광섭;김극태;최정길
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.321-324
    • /
    • 2009
  • Upgrading of pyrolysis wax oil has been conducted in a continuous fixed bed reactor at $450^{\circ}C$, 1hour, LHSV 3.5/h. The catalytic degradation using HZSM-5 catalyst are compared with the thermal degradation and also was studied with a function of experimental variables. The raw pyrolysis wax oil shows relatively high boiling point distribution ranging from around $300^{\circ}C$ to $550^{\circ}C$, which has considerably higher boiling point distribution than that of commercial diesel. The product characteristic from thermal degradation shows a similar trend with that of raw pyrolysis wax oil. This means the thermal degradation of pyrolysis wax oil at high degradation temperature is not sufficiently occurred. On the other hand, the catalytic degradation using HZSM-5 catalyst relative to the thermal degradation shows the high conversion of pyrolysis wax oil to light hydrocarbons. This liquid product shows high gasoline range fraction as around 90% fraction and considerably high aromatic fraction in liquid product. Also, in the catalytic degradation the experimental variable such as catalyst amount and reaction temperature was studied.

  • PDF

고정층 반응기에서 DME 직접합성에 관한 실험 연구 (The Experimental Study on the Direct Synthesis of DME (Dimethyl Ether) in the Fixed Bed Reactor.)

  • 최창우;조원일;주우성;이승호;백영순;노경호
    • 한국수소및신에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.283-290
    • /
    • 2004
  • The single-step process for conversion of syngas to DME give higher conversion than the syngas-to-methanol process. This arises because of a synergy among the three simultaneous reaction, methanol synthesis, methanol dehydration and water gas shift reaction, in the process. we would find the optimal condition of the process which these advantages. The optimal condition of DME synthesis reaction over a commercial $Cu/Zn/Al_2O_3$ catalyst and Hybrid catalyst in a fixed bed reactor. The syngas-to-dimethyl ether conversion was examined on various reaction condition (Temperature 473~553K, $H_2/CO$ ratio 1~3, Pressure 30'50atm, GHSV 1000~4000).

촉매 개질기를 이용한 우드칩 가스화 합성가스 내 타르 및 수트 제거 (Removal of Tar and Soot in The Syngas Produced from Gasification of Wood Chip by Using Catalytic Reformer)

  • 윤상준;손영일;김용구;이재구
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.519-525
    • /
    • 2009
  • The catalytic steam reforming of woody biomass tar and soot to convert a synthetic gas containing hydrogen was investigated by using a bench-scale biomass gasification system. One commercial nickel-based catalyst, Katalco 46-6Q, and two different kinds of natural minerals, dolomite and olivine, were tested as a reforming catalyst at various reforming temperatures. The reaction characteristics of woody biomass tar were also investigated by TGA at a variety of heating rates. With all three catalysts conversion efficiency of tar and soot increased at increasing temperature. The reforming of tar and soot in the synthetic gas induce the increase of combustible gases such as $H_2$, CO and $CH_4$ in the product gas. The nickel-based catalyst showed a higher tar and soot conversion efficiency than mineral catalysts under the same temperature conditions.

Synthesis and electrochemical analysis of Pt-loaded, polypyrrole-decorated, graphene-composite electrodes

  • Park, Jiyoung;Kim, Seok
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.117-120
    • /
    • 2013
  • In this study, an electro-catalyst of Pt nanoparticles supported by polypyrrole-functionalized graphene (Pt/PPy-reduced graphene oxide [RGO]) is reported. The Pt nanoparticles are deposited on the PPy-RGO composite by chemical reduction of H2PtCl6 using NaBH4. The presence of graphene (RGO) caused higher activity. This might have been due to increased electro-chemically accessible surface areas, increased electronic conductivity, and easier charge-transfer at polymer-electrolyte interfaces, allowing higher dispersion and utilization of the deposited Pt nano-particles. Microstructure, morphology and crystallinity of the synthesized materials were investigated using X-ray diffraction and transmission electron microscopy. The results showed successful deposition of Pt nano-particles, with crystallite size of about 2.7 nm, on the PPy-RGO support film. Catalytic activity for methanol electro-oxidation in fuel cells was investigated using cyclic voltammetry. The fundamental electrochemical test results indicated that the electro-catalytic activity, for methanol oxidation, of the Pt/PPy-RGO combination was much better than for commercial catalyst.

MCFC용 개질기 및 프리컨버터의 수치연구 (NUMERICAL STUDY OF STREAM REFORMER AND PRECONVERTER FOR MCFC)

  • 변도현;손창현
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.42-47
    • /
    • 2011
  • In this paper, various operating parameters of stream reforming process from methane in stream reformer and preconverter for MCFC is studied by numerical method. Commercial code is used to simulated the porous catalyst with user subroutine to model three dominant chemical reactions which are Stream Reforming(SR), Water-Gas Shift(WGS), and Direct Stram Reforming(DSR). The hydrogen production is tested with different wall temperature and different reactor shapes. The calculated results of the concentration of hydrogen in stream reformer are very well consistent with experimental results. This numerical study gives the design reactor wall temperature condition and size of reactor to satisfy the required fuel conversion.

충전층 메탄화 반응기의 수학적 모델 및 전산 수치해석 (Mathematical Model and Numerical Analysis for Packed Bed Methanation Reactors)

  • 지준화
    • 한국수소및신에너지학회논문집
    • /
    • 제26권3호
    • /
    • pp.260-270
    • /
    • 2015
  • One-dimensional packed bed reactor model accounting for interfacial and intra-particle gradients was developed and based on it numerical analyses were performed to investigate the dynamic behavior of a commercial scale methanation reactor. Methanation reaction was almost complete near the reactor inlet and gases with equilibrated composition were discharged from the reactor. Both the intra-particle temperature gradient and differential surface temperature rise were found to be severe near the reactor inlet. To reduce the possible degradation or fracture of catalyst particles and prevent local overheating on the catalyst, addition of inert material can be an effective way.

MCFC 프리컨버터 촉매의 열전도특성과 연료전환율 해석 (NUMERICAL STUDY OF HEAT TRANSFER AND FUEL CONVERSION FOR MCFC'S PRECONVERTER)

  • 변도현;손창현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.112-116
    • /
    • 2011
  • In this paper, a preconverter of MCFC for an emergence electric power supplier is numerically simulated to increase the hydrogen production from natural gas (methane). Commercial code is used to simulated the porous catalyst with user subroutine to model three dominant chemical reactions which are Stream Reforming(SR), Water-Gas Shift(WGS), and Direct Stram Reforming(DSR). To get 10% fuel conversion rate in preconverter. the required external heat flux is supplied from outer wall of preconverter. The calculated results show that very nonuniform temperature distribution and chemical reaction happen near the wall of preconverter. These phenomena can be explained by the low heat conductivity of porous catalyst and the endothermic reforming reaction.

  • PDF

디젤 SCR 후처리장치 내 공간속도가 NOx 저감에 미치는 영향 (Effect of Space Velocity on the DeNOx Performance in Diesel SCR After-Treatment System)

  • 왕태중;백승욱;강대환;길정기;여권구
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.49-54
    • /
    • 2006
  • The present study conducted a numerical modeling on the diesel SCR (selective catalytic reduction) system using ammonia as a reductant over vanadium-based catalysts $(V_2O_5-WO_3/TiO_2)$. Transient modeling for ammonia adsorption/desorption on the catalyst surface was firstly carried out, and then the SCR reaction was modeled considering for it. In the current catalytic reaction model, we extended the pure chemical kinetic model based on laboratory-scale powdered-phase catalyst experiments to the chemico-physical one applicable to realistic commercial SCR reactors. To simulate multi-dimensional heat and mass transfer phenomena, the SCR reactor was modeled in two dimensional, axisymmetric domain using porous medium approach. Also, since diesel engines operate in transient mode, the present study employed an unsteady model. In addition, throughout simulations using the developed code, effects of space velocity on the DeNOx performance were investigated.

  • PDF

에스테르 교환반응과 흡착제를 이용한 오징어 내장유의 품질 개선 (Study for Improving Properties of Squid Viscera Oil Using Transesterification and Adsorption)

  • 노명균;;전병수
    • 한국해양바이오학회지
    • /
    • 제2권4호
    • /
    • pp.257-262
    • /
    • 2007
  • Squid viscera oil was investigated by pretreatment method for enhancing the commercial value. Transeterification was performed to reduce rancidity of the oil, off-flavor was removed by using activated carbon adsorption. Analysis using ATD (Automatic Thermal Desorber) and GC/MG shows the efficacy of off-flavor removement. The rates of Transesterification employing inorganic catalyst and biocatalyst were tested, respectively. With stepwise addition of ethanol, the most efficiency of the reaction was achieved by inorganic catalyst. The efficiency of the reaction was estimated by acid value corresponding to rancidity of reaction product.

  • PDF