• Title/Summary/Keyword: Commercial Pilot

Search Result 168, Processing Time 0.028 seconds

An Innovative Expert System for the Maintenance of On-site Wastewater Treatment Process for Small-scale Residential and Commercial Sites (마을단위 소규모 하·폐수처리 공정의 효율적 유지관리를 위한 전문가 시스템에 관한 연구)

  • Kim, Seung-jun;Choi, Yong-su;Hong, Seok-won;Kwon, Gi-han;Chung, Ik-jae
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.132-140
    • /
    • 2005
  • The pilot test of a new alternative for small wastewater treatment system has been conducted for two years. It consists of a hybrid bioreactor and the expert system including the process control logic, PLC system, and HMI for the process automation. In order to monitor and remote control its status, the real-time data was transferred from the on-site control center to the central station via a wireless local area network. More efficient and stable performances were observed at automatic operating mode compared with the manual. On an average, COD, SS, T-N and T-P concentrations in the effluent from the hybrid bioreactor were less than 14, 7, 12 and 0.9 mg/L, respectively. According to the result from pilot tests, the quality of treated wastewater with sand filtration was enough to be utilized again.

Ground Test and Evaluation of a Flight Control Systemfor Unmanned Aerial Vehicles

  • Suk, Jin-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.57-63
    • /
    • 2004
  • UAV(Unmanned Aerial Vehicle) has become one of the most popularmilitary/commercial aerial robots in the new millennium. In spite of all theadvantages that UAVs inherently have, it is not an easv job to develop a UAVbecause it requires very systematic and complete approaches in full developmentenvelop. The ground test and evaluation phase has the utmost importance in thesense that a well-developed system can be best verified on the ground. In addition,many of the aircraft crashes in the flight tests were resulted from the incompletedevelopment procedure. In this research, a verification procedure of the wholeairbome integrated system was conducted including the flight management system.An airbome flight control computer(FCC) senses the extemal environment from thepehpheral devices and sends the control signal to the actuating system using theassigned control logic and flight test strategy. A ground test station controls themission during the test while the downlink data are transferred from the flightmanagement computer using the serial communication interface. The pilot controlbox also applies additional manual actuating commands. The whole system wastested/verified on the wind-tunnel system, which gave a good pitch controlperformance with a preUspecified flight test procedure. The ground test systemguarantees the performance of fundamental functions of airbome electronic systemfor the future flight tests.

Glass Thinning by Fluoride Based Compounds Solution with Low Hydrofluoric acid Concentration (저불산 불소계 화합물 수용액을 이용한 글라스 박판화)

  • Kim, Ho-Tae;Gang, Dong-goo;Kim, Jin-Bae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.557-560
    • /
    • 2009
  • In this study, a new wet etching method and the solution for thinning the glass with the thickness below $100{\mu}m$ were investigated. For the preparation of etching solution with low hydrofluoric acid, it was effective to use $NH_4F$ or $NH_4HF_2$ as a main ingredient with the addition of sulfuric acid or nitric acid. Influence of the composition of mixed acid solution and the temperature on the etching rate was investigated. The addition of anionic surfactant provides the function to prevent the adhesion of sludge generated by the etching reaction. A new wet etching pilot device equipped with streaming generation parts was used to test etching of commercial non-alkali glass and soda lime glass. The non-alkali glass with the thickness of 640 ${\mu}m$ and soda lime glass with the thickness of $500{\mu}m$ were etched to $45{\mu}m$ and $100{\mu}m$, respectively, by using the pilot device. After the etching by pilot device, the roughness degree of the glass surface was maintained at $0.01{\sim}0.02{\mu}m$.

Study on the Seed Production of Olive Flounder Paralichthys olivaceus in a Pilot Scale Recirculating Aquaculture System

  • Park, Jeong-Hwan;Jo, Jae-Yoon;Kim, Pyong-Kih
    • Journal of Aquaculture
    • /
    • v.21 no.3
    • /
    • pp.125-132
    • /
    • 2008
  • Seed production of olive flounder Paralichthys olivaceus was performed in a pilot RAS. The growth of juvenile olive flounder and changes in water quality were monitored for the entire production period. The pilot RAS consisted of 8 circular culture tanks($4.0mD{\times}1.0mH$), 2 trickling biofilters($1.7mD{\times}2.0mH$), 2 protein skimmers ($0.8mD{\times}2.5mH$), and 4 sedimentation chambers($0.7mD{\times}1.5mH$). The culture surface area was about $100.5m^2$ and the actual working volume was about $106.9m^3$. As many as 300,000 fertilized olive flounder eggs were initially distributed into 2 culture tanks with the water temperature at $19.0^{\circ}C$. Live feeds such as rotifers and Artemia nauplii were fed until the 32nd day after hatching, and a commercial diet was fed from the 19th day to the end of the experiment. After 70 days, 150,256 juveniles with a body length of $65.8{\pm}3.9mm$ were produced in the RAS, with a daily growth rate for body length of 4.7%/day. At this time, the final culture density was 1,495 individuals $m^{-2}$, and 13.6 L of makeup water, 0.071 kW of electricity and 0.025 L of diesel fuel were used to produce a juvenile olive flounder. During metamorphosis of the larvae, the TAN concentration increased to 0.99 mg/L, which made the larvae sensitive to result in some mortality. However no more massive mortality occurred at the juvenile stage after metamorphosis even at a TAN concentration of 4.25 mg/L and a ${NO_2}^{-}-N$ concentration of 2.45 mg/L.

KEPCO-China Huaneng Post-combustion CO2 Capture Pilot Test and Cost Evaluation

  • Lee, Ji Hyun;Kwak, NoSang;Niu, Hongwei;Wang, Jinyi;Wang, Shiqing;Shang, Hang;Gao, Shiwang
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.150-162
    • /
    • 2020
  • The proprietary post-combustion CO2 solvent (KoSol) developed by the Korea Electric Power Research Institute (KEPRI) was applied at the Shanghai Shidongkou CO2 Capture Pilot Plant (China Huaneng CERI, capacity: 120,000 ton CO2/yr) of the China Huaneng Group (CHNG) for performance evaluation. The key results of the pilot test and data on the South Korean/Chinese electric power market were used to calculate the predicted cost of CO2 avoided upon deployment of CO2 capture technology in commercial-scale coal-fired power plants. Sensitivity analysis was performed for the key factors. It is estimated that, in the case of South Korea, the calculated cost of CO2 avoided for an 960 MW ultra-supercritical (USC) coal-fired power plant is approximately 35~44 USD/tCO2 (excluding CO2 transportation and storage costs). Conversely, applying the same technology to a 1,000 MW USC coal-fired power plant in Shanghai, China, results in a slightly lower cost (32~42 USD/tCO2). This study confirms the importance of international cooperation that takes into consideration the geographical locations and the performance of CO2 capture technology for the involved countries in the process of advancing the economic efficiency of large-scale CCS technology aimed to reduce greenhouse gases

Statistical Models of Air Temperatures in Seoul (서울시 도시기온 변화에 관한 모델 연구)

  • 김학열;김운수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.74-82
    • /
    • 2003
  • Under the assumption that the temperature of one location is closely related to land use characteristics around that location, this study is carried out to assess the impact of urban land use patterns on air temperature. In order to investigate the relationship, GIS techniques and statistical analyses are utilized, after spatially connecting urban land use data in Seoul Metropolitan Area with atmospheric data observed at Automatic Weather Stations (AWS). The research method is as follows: (1) To find out important land use factors on temperature, simple linear regressions for a specific time period (pilot study) are conducted with urban land use characteristics, (2) To make a final model, multiple regressions are carried out with those factors and, (3) To verify that the final model could be appled to explain temperature variations beyond the period, the model is extensively used for 5 different time periods: 1999 as a whole; summer in 1999; 1998 as a whole; summer in 1998; August in 1998. The results of simple linear regression models in the pilot study show that transportation facilities and open space area are very influential on urban air temperature variations, which explain 66 and 61 percent of the variations, respectively. However, the other land use variables (residential, commercial, and mixed land use) are found to have weak or insignificant relationship to the air temperatures. Multiple linear regression with the two important variables in the pilot study is estimated, which shows that the model explains 75 percent of the variability in air temperatures with correct signs of regression coefficients. Thus, it is empirically shown that an increase in open space and a decrease in transportation facilities area can leads to the decrease in air temperature. After the final model is extensively applied to the 5 different time periods, the estimated models explain 68 ∼ 75 percent of the variations in the temperatures is significant regression coefficients for all explanatory variables. This result provides a possibility that one air temperature model for a specific time period could be a good model for other time periods near to the period. The important implications of this result to lessen high air temperature we: (1) to expand and to conserve open space and (2) to control transportation-related factors such as transportation facilities area, road pavement and traffic congestion.

Unstable Approach Mitigation Based on Flight Data Analysis (비행 데이터 분석 기반의 불안정 접근 경감방안)

  • Kim, Hyeon Deok
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.52-59
    • /
    • 2021
  • According to the International Air Transport Association (IATA), 61% of the accidents occurred during the approach and landing phase of the flight, with 16% of the accidents caused by unstable access of the commercial aircraft. It was identified that the pilot's unstable approach and poor manipulation of correction led to accidents by continuing the excessive approach without go-around manuever. The causes of unstable access may vary, including airport approach procedures, pilot error, misplanning, workload, ATC (Air Traffic Contol) congestion, etc. In this study, we use the flight data analysis system to select domestic case airports and aircraft type where unstable approach events occur repeatedly. Through flight data analysis, including main events, airport approach procedures, pilot operations, as well as various environmental factors such as weather and geographical conditions at the airport. It aims to identify and eliminate the tendency of unstable approach events and the causes and risks of them to derive implications for mitigating unstable approach events and for developing navigation safety measures.

Development of a Biofungicide Using a Mycoparasitic Fungus Simplicillium lamellicola BCP and Its Control Efficacy against Gray Mold Diseases of Tomato and Ginseng

  • Shin, Teak Soo;Yu, Nan Hee;Lee, Jaeho;Choi, Gyung Ja;Kim, Jin-Cheol;Shin, Chul Soo
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.337-344
    • /
    • 2017
  • To develop a commercial product using the mycoparasitic fungus Simplicillium lamellicola BCP, the scale-up of conidia production from a 5-l jar to a 5,000-l pilot bioreactor, optimization of the freeze-drying of the fermentation broth, and preparation of a wettable powder-type formulation were performed. Then, its disease control efficacy was evaluated against gray mold diseases of tomato and ginseng plants in field conditions. The final conidial yields of S. lamellicola BCP were $3.3{\times}10^9conidia/ml$ for a 5-l jar, $3.5{\times}10^9conidia/ml$ for a 500-l pilot vessel, and $3.1{\times}10^9conidia/ml$ for a 5,000-l pilot bioreactor. The conidial yield in the 5,000-l pilot bioreactor was comparable to that in the 5-l jar and 500-l pilot vessel. On the other hand, the highest conidial viability of 86% was obtained by the freeze-drying method using an additive combination of lactose, trehalose, soybean meal, and glycerin. Using the freeze-dried sample, a wettable powder-type formulation (active ingredient 10%; BCP-WP10) was prepared. A conidial viability of more than 50% was maintained in BCP-WP10 until 22 weeks for storage at $40^{\circ}C$. BCP-WP10 effectively suppressed the development of gray mold disease on tomato with control efficacies of 64.7% and 82.6% at 500- and 250-fold dilutions, respectively. It also reduced the incidence of gray mold on ginseng by 65.6% and 81.3% at 500- and 250-fold dilutions, respectively. The results indicated that the new microbial fungicide BCP-WP10 can be used widely to control gray mold diseases of various crops including tomato and ginseng.

Current Status and Prospects on Biofuel Conversion Technologies and Facilities, Using Lignocellulosic Biomass (목질계 바이오연료 생산을 위한 산업화 기술 및 전망)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.622-628
    • /
    • 2016
  • This study investigated to understand the trend of international commercializing technologies and industrial status of the transportation biofuel based on lignocellulosic biomass. Two major commercializing technologies for the lignocellulosic biofuel are biochemical conversion technology and thermochemical conversion technology. It was reported that a total of 93 industrial companies were using lignocellulosic biomass of all facilities related to advanced biofuel. On the basis of commercial type, the biochemical conversion technology was identified to be the major technology in the lignocellulosic biofuel industries, showing 84% of all. Also the main products of commercial type industrial companies are bioethanol (1,155,000 tons/yr) and bio-oil (120,000 tons/yr), which are in a remarkably inadequate amount to substitute for the transportation biofuel worldwide. It was suggested that the transportation biofuel market was currently in need of further development in both technology and scale, and was in high demands of technological development and commercializing exertion.

Development of Commercial-scaled Pervaporation Hollow Fiber Membrane System for High Pressure and High Temperature Applications (고온 고압용 상업적 규모의 중공사 투과증발 막시스템 개발)

  • Yeom, Choong Kyun;Kang, Kyeong Log;Kim, Joo Yeol;Ahn, Hyo Sung;Kwon, Konho
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.257-266
    • /
    • 2013
  • The main purpose of this study is to develop a commercial scale of pervaporative process equipped with hollow fiber membrane modules, being able to effectually purify organic solvent at high temperature well over its boiling point under high vapor pressure. Three constituent technologies have been developed; 1) to fabricate braid-reinforced hollow fiber membrane stable in high pressure and high temperature application, 2) to design and fabricate a commercial scale of hollow fiber membrane module, and 3) to design and fabricate a pilot scale of pervaporation equipment system. The developed hollow fiber membrane possesses a membrane performance superior to the membrane of Sulzer (Germany) which is the most-well known for pervaporation process, and the membrane module equips hollow fiber membranes of $4.6m^2$ and the pervaporation system can treat organic liquid at 200 L/h, which is based on the dehydration of 95 wt% isopropyl alcohol (IPA). Since the membrane module is designed to flow in and pass through the inside of individual hollow fiber membrane, not to involve both the formation of feed's dead volume observed in flat-sheet membrane module and the channeling of feed occurring inside hollow fiber bundle which lower membrane performance seriously, it showed excellent separation efficiency. In particular, the module is inexpensive and has less heat loss into its surrounding, in compared with flat-sheet membrane module. In addition, permeant can be removed effectively from the outer surface of hollow fiber membrane because the applied vacuum is conveyed uniformly through space between fibers into respective fiber, even into one in the middle of the hollow fiber bundle in which the space between fibers is uniform in distance. Since the hollow fiber membrane pervaporation system is the first one ever developed in the world, our own unique proprietary technology can be secured, preoccupying technical superiority in export competitive challenges.