• Title/Summary/Keyword: Commercial Ge

Search Result 63, Processing Time 0.02 seconds

Pharmacokinetic Evaluation of Ketorolac Tromethamine Sustained-Release Pellets after Oral Administration in Rabbits (케토롤락트로메타민 서방성 펠렛의 약물속도론적 평가)

  • Kwak, Son-Hyok;Hwang, Sung-Joo;Jiang, Ge;Nam, Kyung-Wan;Moon, Young-Girl;Lee, Hai-Bang;Cho, Sun-Hang;Yuk, Soon-Hong;Lee, Han-Koo;Jeong, Sang-Young;Lee, Young-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2000
  • To develop a sustained-release preparation containing ketorolac tromethamine, two sustained-release pellet formulations were evaluated with a pharmacokinetic study as compared with a conventional commercial tablets (10 mg $Tarasyn^{TM}$, Roche Korea Ltd.). Two sustained-release formulations were as follows; formulation A was composed of an inner layer containing 75% of drug coated with $Eudragit^{TM}$ RS 100 membrane and an outer layer containing 25% of drug mixed with $Eudragit^{TM}$ NE30D, and formulation B was composed of only an inner layer containing 100% of drug coated with $Eudragit^{TM}$ RS 100 membrane. The dissolution test was performed for two formulations. In case of conventional tablets, 2.5 mg of drug per a dose was administered orally into male Albino rabbit (2.0-2.3 kg of body weight) 3 times at intervals of 4 hours. In case of two sustained formulations, 7.5 mg of drug was administered once orally. Blood samples were withdrawn periodically after the administration, and the blood concentration was determined by HPLC. The conventional tablets showed very high peak-trough fluctuation between administered doses, but two sustained formulations showed less fluctuation. Formulation A with the loading dose showed the time to reach minimum effective concentration (MEC) i.e. the onset time was less than 20 min, while Formulation B had more than 1 hr of the onset time. Formulation A had the more constant plasma level than formulation B. However, formulation B had a time lag, so the plasma level was less than MEC for an initial period of 1 hr. In formulation A, the plasma level was maintained within the therapeutic window $(0.3-5\;{\mu}g/ml)$ for a long period. Formulation A was thought to be an ideal sustained-release formulation for ketorolac tromethamine oral delivery system.

  • PDF

Development of Radiosynthetic Methods of 18F-THK5351 for tau PET Imaging (타우 PET영상을 위한 18F-THK5351의 표지방법 개발)

  • Park, Jun-Young;Son, Jeong-Min;Chun, Joong-Hyun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.51-54
    • /
    • 2018
  • Purpose $^{18}F-THK5351$ is the newly developed PET probe for tau imaging in alzheimer's disease. The purpose of study was to establish the automated production of $^{18}F-THK5351$ on a commercial module. Materials and Methods Two different approaches were evaluated for the synthesis of $^{18}F-THK5351$. The first approach (method I) included the nucleophilic $^{18}F$-fluorination of the tosylate precursor, subsequently followed by pre-HPLC purification of crude reaction mixture with SPE cartridge. In the second approach (method II), the crude reaction mixture was directly introduced to a semi-preparative HPLC without SPE purification. The radiosynthesis of $^{18}F-THK5351$ was performed on a commercial GE $TRACERlab^{TM}$ $FX-_{FN}$ module. Quality control of $^{18}F-THK5351$ was carried out to meet the criteria guidelined in USP for PET radiopharmaceuticals. Results The overall radiochemical yield of method I was $23.8{\pm}1.9%$ (n=4) as the decay-corrected yield (end of synthesis, EOS) and the total synthesis time was $75{\pm}3min$. The radiochemical yield of method II was $31.9{\pm}6.7%$ (decay-corrected, n=10) and the total preparation time was $70{\pm}2min$. The radiochemical purity was>98%. Conclusion This study shows that method II provides higher radiochemical yield and shorter production time compared to the pre-SPE purification described in method I. The $^{18}F-THK5351$ synthesis by method II will be ideal for routine clinical application, considering short physical half-life of fluorine-18 ($t_{1/2}=110min$).

Research on Perfusion CT in Rabbit Brain Tumor Model (토끼 뇌종양 모델에서의 관류 CT 영상에 관한 연구)

  • Ha, Bon-Chul;Kwak, Byung-Kook;Jung, Ji-Sung;Lim, Cheong-Hwan;Jung, Hong-Ryang
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.165-172
    • /
    • 2012
  • We investigated the vascular characteristics of tumors and normal tissue using perfusion CT in the rabbit brain tumor model. The VX2 carcinoma concentration of $1{\times}10^7$ cells/ml(0.1ml) was implanted in the brain of nine New Zealand white rabbits (weight: 2.4kg-3.0kg, mean: 2.6kg). The perfusion CT was scanned when the tumors were grown up to 5mm. The tumor volume and perfusion value were quantitatively analyzed by using commercial workstation (advantage windows workstation, AW, version 4.2, GE, USA). The mean volume of implanted tumors was $316{\pm}181mm^3$, and the biggest and smallest volumes of tumor were 497 $mm^3$ and 195 $mm^3$, respectively. All the implanted tumors in rabbits are single-nodular tumors, and intracranial metastasis was not observed. In the perfusion CT, cerebral blood volume (CBV) were $74.40{\pm}9.63$, $16.08{\pm}0.64$, $15.24{\pm}3.23$ ml/100g in the tumor core, ipsilateral normal brain, and contralateral normal brain, respectively ($p{\leqq}0.05$). In the cerebral blood flow (CBF), there were significant differences between the tumor core and both normal brains ($p{\leqq}0.05$), but no significant differences between ipsilateral and contralateral normal brains ($962.91{\pm}75.96$ vs. $357.82{\pm}12.82$ vs. $323.19{\pm}83.24$ ml/100g/min). In the mean transit time (MTT), there were significant differences between the tumor core and both normal brains ($p{\leqq}0.05$), but no significant differences between ipsilateral and contralateral normal brains ($4.37{\pm}0.19$ vs. $3.02{\pm}0.41$ vs. $2.86{\pm}0.22$ sec). In the permeability surface (PS), there were significant differences among the tumor core, ipsilateral and contralateral normal brains ($47.23{\pm}25.45$ vs. $14.54{\pm}1.60$ vs. $6.81{\pm}4.20$ ml/100g/min)($p{\leqq}0.05$). In the time to peak (TTP) were no significant differences among the tumor core, ipsilateral and contralateral normal brains. In the positive enhancement integral (PEI), there were significant differences among the tumor core, ipsilateral and contralateral brains ($61.56{\pm}16.07$ vs. $12.58{\pm}2.61$ vs. $8.26{\pm}5.55$ ml/100g). ($p{\leqq}0.05$). In the maximum slope of increase (MSI), there were significant differences between the tumor core and both normal brain($p{\leqq}0.05$), but no significant differences between ipsilateral and contralateral normal brains ($13.18{\pm}2.81$ vs. $6.99{\pm}1.73$ vs. $6.41{\pm}1.39$ HU/sec). Additionally, in the maximum slope of decrease (MSD), there were significant differences between the tumor core and contralateral normal brain($p{\leqq}0.05$), but no significant differences between the tumor core and ipsilateral normal brain($4.02{\pm}1.37$ vs. $4.66{\pm}0.83$ vs. $6.47{\pm}1.53$ HU/sec). In conclusion, the VX2 tumors were implanted in the rabbit brain successfully, and stereotactic inoculation method make single-nodular type of tumor that was no metastasis in intracranial, suitable for comparative study between tumors and normal tissues. Therefore, perfusion CT would be a useful diagnostic tool capable of reflecting the vascularity of the tumors.