• 제목/요약/키워드: Comfort Conditions

검색결과 456건 처리시간 0.021초

A Method to Protect Mine Workers in Hot and Humid Environments

  • Sunkpal, Maurice;Roghanchi, Pedram;Kocsis, Karoly C.
    • Safety and Health at Work
    • /
    • 제9권2호
    • /
    • pp.149-158
    • /
    • 2018
  • Background: Work comfort studies have been extensively conducted, especially in the underground and meteorological fields resulting in an avalanche of recommendations for their evaluation. Nevertheless, no known or universally accepted model for comprehensively assessing the thermal work condition of the underground mine environment is currently available. Current literature presents several methods and techniques, but none of these can expansively assess the underground mine environment since most methods consider only one or a few defined factors and neglect others. Some are specifically formulated for the built and meteorological climates, thus making them unsuitable to accurately assess the climatic conditions in underground development and production workings. Methods: This paper presents a series of sensitivity analyses to assess the impact of environmental parameters and metabolic rate on the thermal comfort for underground mining applications. An approach was developed in the form of a "comfort model" which applied comfort parameters to extensively assess the climatic conditions in the deep, hot, and humid underground mines. Results: Simulation analysis predicted comfort limits in the form of required sweat rate and maximum skin wettedness. Tolerable worker exposure times to minimize thermal strain due to dehydration are predicted. Conclusion: The analysis determined the optimal air velocity for thermal comfort to be 1.5 m/s. The results also identified humidity to contribute more to deviations from thermal comfort than other comfort parameters. It is expected that this new approach will significantly help in managing heat stress issues in underground mines and thus improve productivity, safety, and health.

여름철 실내외 온도차에 따른 인체의 온열쾌적성 평가 (Evaluation of Thermal Comfort on Temperature Differences between Outdoor and Indoor Thermal Conditions in Summer)

  • 금종수;김동규;최광환;이낙범;임재중;최호선;배동석
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.890-896
    • /
    • 2002
  • Purpose of this study is to clarify the evaluation of thermal comfort based on temperature differences between outdoor and indoor thermal conditions in summer. The experiments were performed to evaluate temperature difference between indoor and outdoor thermal conditions (29, 31, $33^{\circ}$) by physiological and psychological responses of human. According to physiological responses, TSV (thermal sensation vote) and CSV (comfort sensation vote) and psychological responses, ECG (electrocardiogram), MST (mean skin temperature) of human, it was clear that the optimum temperature difference is about $5^{\circ})\;and\;7^{\circ}$).

발한 Thermal manikin과 국제 표준 7730을 이용한 원자력 발전소 작업복의 열적 쾌적성 판별 (Determining thermal comfort properties of coverall worn in the atomic power plant using a sweating thermal manikin and ISO 7730)

  • 홍성애
    • 대한인간공학회지
    • /
    • 제15권1호
    • /
    • pp.91-103
    • /
    • 1996
  • For determining thermal comfort properties of work suit in an atomic power plant, three different coverall ensembles (PVE, PET/Rayon, PP Nonwoven) were selected and the resistance to dry and evaporative heat transfer were measured for each ensemble by using a sweating thermal manikin. Also, PMV (Predicted Mean Vote) and PPD(Predicted Percentage of Dissatisfied) indices were predicted according to ISO 7730. As a result, ideal environmental conditions in an atomic power plant were suggested to make workers feel thermally comfortable. In addition, ideal intrinsic insulation values of coverall ensembles as a work suit under the present environmental conditions in the at6omic power plant were provided. The information given in this paper can be used to control environmental conditions in the atomic power plant thermally comfortable and to select a proper work suit for providing thermal comfort to the workers.

  • PDF

베네시안 블라인드가 적용된 오피스 건물의 외피 투과체 계획을 위한 열·빛 환경 평가에 대한 연구 (Evaluation of Thermal and Visual Environment for the Glazing and Shading Device in an Office Building with Installed of Venetian Blind)

  • 김철호;김강수
    • KIEAE Journal
    • /
    • 제15권6호
    • /
    • pp.101-109
    • /
    • 2015
  • Purpose: Glazing and shading devices influence a lot on the thermal and visual environment in office buildings. Solar heat and daylight are contrary concept, therefore proper arrangement of thermal and optical performance is needed when designing a glazing and shading devices. The purpose of this study is to examine the conditions of the glazing and shading devices available for promoting the reduction of cooling loads + lighting loads and the improvement in thermal comfort and visual comfort for the summer season in an office building installed with venetian blind. Method: This study established 12 simulation cases which have different glazings and the positions of venetian blind for evaluating different thermal and optical performance. And by using EnergyPlus v8.1 and Window v7.2 program, we quantitatively analyzed cooling loads + lighting loads, thermal comfort and visual comfort in an office building installed with the glazing and shading devices. Result: Consequently, Case 9(Double Low-E+Exterior Blind) is the best arrangement of solar heat gain and daylight influx, thereby becomes the most excellent case of reducing cooling+lighting loads(46.8%) and simultaneously becomes the enhancement case in thermal comfort. Also, DGI(Daylight glare index) under clear sky conditions in summer was evaluated to be 19.6, and thereby satisfied the recommendation level of allowing visual comfort.

조선업 작업장의 작업환경 및 산업용 보호복의 착의실태 (The Work Environment and Wearing Conditions of Industrial Protective Clothing in Shipbuilding Workshops)

  • 배현숙;김민영
    • 한국의류학회지
    • /
    • 제36권5호
    • /
    • pp.512-522
    • /
    • 2012
  • This study examined the work environment and wearing conditions of industrial protective clothing in shipbuilding workshops. It also investigated the relationship between the wearing sensation of industrial protective clothing and overall comfort, according to work process. In addition, the work posture according to work process was evaluated based on ergonomic factors. The wearing rate of industrial protective clothing was 73.3%, 66.7%, and 60.1% for workers engaged in welding, grinding, and painting, respectively. The harmful work environment factors, listed from most harmful to least harmful, were found to be high temperature pyrogens, noxious fumes, organic solvents, UV rays, and heavy dust. The aspect of wearing performance of industrial protective clothing that was most related to user dissatisfaction was poor sweat absorbency. In terms of the correlation between the overall comfort and the wearing sensation of industrial protective clothing, the satisfaction was low shown in orders of physiological comfort, sensual comfort, and movement comfort.

건축외부공간에 있어서 인체의 일사열부하(日射熱負荷) 및 열적(熱的) 쾌적성(快適性)에 관한 실험적 연구 (Human Solar Heat Load and Thermal Comfort in an Outdoor Environment)

  • 정창원;윤인
    • 한국산업융합학회 논문집
    • /
    • 제1권2호
    • /
    • pp.65-74
    • /
    • 1998
  • The purpose of this paper is to investigate the mount of relief of human solar heat load and thermal comfort in outdoor environment in summer, Six different types of sites, T garden and its neighboring area in Japan, were selected as the experiment sites. The experiments were conducted from 22 to 29 August, 1994 to find the relationship between climatic conditions and human responses, Climatic conditions, subjects's thermal sensation and skin temperature were measured. Radiant heat exchange on the human body was estimated on the basis of the measured air and surface temperature and solar radiation. Thermal index Operative Temperature and New Effective Temperature was modified with the effect of the radiant heat exchange. Human thermal comfort and skin temperature is affected by the solar radiation and the sky factor in an outdoor environment. The effect of tree shade was verified on thermal comfort, The mount of relief of human solar heat load is relation to the existence of shade a solar radiation and the sky factor. The urban garden is one of the effective design element in an urban environmental planning.

  • PDF

산업현장의 작업환경 및 공정에 따른 작업복 착의실태 -기계.자동차.조선업을 중심으로- (The Wearing Conditions of Working Clothes According to the Working Environment and Working Processes at Industry Sites -With Reference to Machinery, Automobiles, and the Shipbuilding Industry-)

  • 배현숙;박혜원;박진아;김지관
    • 한국의류학회지
    • /
    • 제34권8호
    • /
    • pp.1378-1391
    • /
    • 2010
  • This study examines the wearing conditions of working clothes according to the working environment and working processes at machinery, automobile, shipbuilding industry sites. It also investigates the relationship between the wearing sense of working clothes and the overall comfort according to work processes. The hazardous working environment was high in the order of the shipbuilding industry, machinery, and automobiles. The findings on the harmful overall work environmental factors were the noise, heavy dust, and noxious fumes, respectively. In general, the satisfaction with the wearing performance of working clothes was low especially with regard to sweat absorbency, sweat permeability, body protection and covering, and the work motion suitability. In respect of the correlation between the overall comfort and the wearing sense of working clothes, the satisfaction was decreased in the order of movement comfort, sensual comfort, and physiological comfort.

겨울철 온도 및 습도변화에 따른 온열쾌적감에 관한 연구 (A Study of Thermal Comfort by Winter Temperature Humidity Change)

  • 김세환;이성;김동규
    • 설비공학논문집
    • /
    • 제19권11호
    • /
    • pp.803-809
    • /
    • 2007
  • To those who spend most time within a room, comfortable indoor environment is a very critical element to job performance and health. The comfort technology, which is for enhancing comfort in human living, relates with various factors to ensure human activities efficient, comfortable, safe and satisfactory. Experiments were performed in environmental chamber. Experimental conditions were combinations from three temperatures of 18, 22 and 26C, and two relative humidity levels of 45 and 60%. Air-flow was controlled to 0.1m/s through the experiment. Four male and four female university students participated in the experiments. They had normal blood pressure and their body temperature was under $37^{\circ}C$. From the experiments for evaluating thermal sensation to the air-heating conditions, relationships among TSV, CSV, $SET^*$, PMV were analyzed. Results can be summarized as followings; Thermal neutrality $SET^*$ of man and female was $24.8^{\circ}C$. In air-heating condition, $SET^*$ values for thermal comfort zone were $23.0{\sim}26.5^{\circ}C$. These values were higher than the values from ASHRAE.

Evaluation of thermal comfort and cooling loads for a multistory building

  • Lykartsis, Athanasios;B-Jahromi, Ali;Mylona, Anastasia
    • Advances in Energy Research
    • /
    • 제5권1호
    • /
    • pp.65-77
    • /
    • 2017
  • The latest UK Climate Projections (UKCP09) show that mean daily temperatures will increase everywhere in the United Kingdom. This will significantly affect the thermal and energy performance of the current building stock. This study examines an institutional fully glazed building and looks into the changes in the cooling loads and thermal comfort of the occupants during the occupied hours of the non-heating period. Furthermore, it investigates the effect of relative humidity (RH) on thermal comfort. The Design Summer Year (DSY) 2003 for London Heathrow has been used as a baseline for this study and the DSY 2050s High Emissions scenario was used to examine the performance of the building under future weather conditions. Results show a 21% increase of the cooling loads between the two examined scenarios. Thermal comfort appears to be slightly improved during the months of May and September and marginally worsen during the summer months. Results of the simulation show that a relative humidity control at 40% can improve the thermal comfort for 53% of the occupied hours. A comparison of the thermal comfort performance during the hottest week of the year, shows that when the relative humidity control is applied thermal comfort performance of the 2050s is similar or better compared to the thermal comfort performance under the baseline.

Pedestrian wind conditions at outdoor platforms in a high-rise apartment building: generic sub-configuration validation, wind comfort assessment and uncertainty issues

  • Blocken, B.;Carmeliet, J.
    • Wind and Structures
    • /
    • 제11권1호
    • /
    • pp.51-70
    • /
    • 2008
  • CFD is applied to evaluate pedestrian wind comfort at outdoor platforms in a high-rise apartment building. Model validation is focused on generic building sub-configurations that are obtained by decomposition of the actual complex building geometry. The comfort study is performed during the design stage, which allows structural design changes to be made for wind comfort improvement. Preliminary simulations are performed to determine the effect of different design modifications. A full wind comfort assessment study is conducted for the final design. Structural remedial measures for this building, aimed at reducing pressure short-circuiting, appear to be successful in bringing the discomfort probability estimates down to acceptable levels. Finally, the importance of one of the main sources of uncertainty in this type of wind comfort studies is illustrated. It is shown that the uncertainty about the terrain roughness classification can strongly influence the outcome of wind comfort studies and can lead to wrong decisions. This problem is present to the same extent in both wind tunnel and CFD wind comfort studies when applying the same particular procedure for terrain relation contributions as used in this paper.