• 제목/요약/키워드: Combustion velocity

검색결과 894건 처리시간 0.037초

정적연소기에서의 메탄-공기 혼합기의 연소특성(2) : 비균질급기 (Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(2) : Inhomogeneous Charge)

  • 최승환;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.29-36
    • /
    • 2003
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at spark plug and the combustion characteristics of inhomogeneous charge methane-air mixture under several parameters. The flow characteristics such as mean velocity and turbulence intensity was analyzed by hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer was used to investigate the effect of initial charge pressure, excess air ratio and ignition times on combustion pressure and combustion duration. Mean velocity and turbulence intensity had the maximum value at 200 or 300ms and then decreased to beneath 0.05m/s gradually at 3 seconds. Second mixture is accompanied by an increase in the combustion rate, and that the higher the mass which is added in the second stage injection, the faster the burn rate.

자동차 내장재의 연소 특성에 관한 연구 (A Study On Combustion Characteristics of Automobile Interior)

  • 김정훈;박형주;김홍
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1996년도 학술발표회
    • /
    • pp.43-48
    • /
    • 1996
  • It is considered that automobile inner space is dangerous due to its combustion characteristics. (Automobile interior is largely made by plastic materials.) At last it is necessary to study on combustion characteristics of automobile interior. we could obtain its rapid combustion velocity and high smoke density by using ASTM D 2863 apparatus, DSC (Differential Scanning Calorimetry), Smoke density apparatus and so on. The study is summerized by following conditions and results. 1. Sample size was 150mm(length)$\times$60mmwidth). 2. Combustion velocity appeared peak point in the 2cm point. 3. PVC and foam layers are important factors in the face of smoke density. 4. Using DSC, we obtained the point that automobile interior was melted. 5. Automobile interior should be improved because of its low L.O.I value and rapid flame propagation velocity.

  • PDF

액화천연가스 연소기개발에 관한 연구 (A study on the development of liquefied natural gas-fired combustor)

  • 최병륜;오상헌;김덕줄
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.107-118
    • /
    • 1986
  • The presenet research attempts to examine the combustion characteristics and the structure of the flame in turbulent premixed flames and thus enhance the combustion performance that leads to the design of the effective combustion system (untilizing LNG). Following experimental investigations for several stabilized premixed flames were attempted to identify the interactive mechanism between flame structures and flow fields; Visualization by Schlieren method, measurement of flow velocity by LDV, detection of ion current by ion probe, measurement of fluctuating temperature by thermocouple having compensation circuit, average values with respect to time of fluctuating amount for flow velocity, temperature, ion current, etc., variable RMS values, PDFs, autocorrelation, crosscorrelation, spatial macroscale, power spectra, and velocity scale. Continuing the authors published studies whose flame dominated by coherent structures and the characteristics of combustion reaction for irregular three dimensional flame and stabilized flame by step were investigated with obtained experimental quantities. Results of this research are following : The most turbulent flames support the structure of a Wrinkled laminar flame or laminar flamelets. It also observed that combustion reaction is related to small tubulence microscales of the turbulent flow fields closly.

  • PDF

다공판 내의 예혼합연소 특성 해석 (Simulations of premixed combustion in porous media)

  • 신영준;이정원;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.253-255
    • /
    • 2012
  • This study has numerically investigated the combustion processes in the bilayer porous media. To account for the velocity transition and diffusion influenced by solid matrix, porosity effects are included in the governing equations. Heat transfer coefficient is calculated by Nusselt number to reflect the effect of gas velocity, pore diameter, and material properties. Numerical results indicate that the present approach is capable of the essential features of the premixed combustion in the porous burner, in terms of the precised flame structure, pollutant formation, and flame stabilization. It is also found that heat transferred from the downstream flame zone is conducted to the upstream flame region through the solid matrix and the preheated mixture. By increasing the inlet velocity, the solid temperature of upstream is cooling down.

  • PDF

균일예혼합 압축착화 조건에서 PRF75 연료의 비정상 연소특성 해석 (Unsteady Analysis for Combustion Characteristics of PRF75 Fuel under HCCI Conditions)

  • 오태균;이수룡
    • 한국연소학회지
    • /
    • 제18권4호
    • /
    • pp.21-28
    • /
    • 2013
  • HCCI engines have mainly focused on achieving low temperature combustion in order to obtain higher efficiency and lower emission. One of practical difficulties in HCCI combustion is to control the start of combustion and subsequent combustion phasing. The choice of primary reference fuels in HCCI strategy is one of various promising solutions to make HCCI combustion ignition-controlled. The behavior of ignition delay to the frequency variation of sinusoidal velocity oscillation is computationally investigated under HCCI conditions of PRF75 using a reduced chemistry in a counterflow configuration. The second-stage ignition is more delayed as the higher frequency is imposed on nozzle velocity fluctuation whereas the first-stage ignition is not much influenced.

프로판-공기 예혼합기의 화염전파 과정에 관한 연구 (Flame Propagation Characteristics of Propane-Air Premixed Mixtures)

  • 배충식
    • 한국연소학회지
    • /
    • 제1권2호
    • /
    • pp.21-29
    • /
    • 1996
  • Flame propagation characteristics of propane-air mixtures were experimentally investigated in constant-volume combustion chambers. Flame propagation process was observed as a function of mixture strength, initial mixture temperature and initial mixture pressure in quiescent mixtures. A cylindrical combustion chamber and a spherical combustion chamber contain a pair of parallel windows through which optical access into the chamber can be provided. Laser two beam deflection method was adopted to measure the local flame propagation, which gave information on the flame size and flame propagation speed. Pressure development was also measured by a piezoelectric pressure transducer to characterize combustion in quiescent mixtures. Burning velocity was calculated from flame propagation and pressure measurements. The effect of flow on flame propagation was also investigated under flowing mixture conditions. Laser two beam method was found to be feasible in measuring flame propagation of quiescent mixtures. Flame was observed to propagate faster with higher initial mixture temperature and lower initial pressure. Combustion duration was shortened in the highly turbulent flowing mixtures.

  • PDF

Pilot급 산소 MILD 연소에 관한 실험 및 수치해석적 연구 (An Experimental and Numerical Study on the Oxy-MILD Combustion at Pilot Scale Heating Capacity)

  • 차천륜;이호연;황상순
    • 설비공학논문집
    • /
    • 제28권7호
    • /
    • pp.275-282
    • /
    • 2016
  • MILD (Moderate and Intense Low-oxygen Dilution) combustion using oxygen as an oxidizer is considered as one of the most promising combustion technologies for high energy efficiency and for reducing nitrogen oxide and carbon dioxide emissions. In order to investigate the effects of nozzle angle and oxygen velocity conditions on the formation of oxygen-MILD combustion, numerical and experimental approaches were performed in this study. The numerical results showed that the recirculation ratio ($K_V$), which is an important parameter for performing MILD combustion, was increased in the main reaction zone when the nozzle angle was changed from 0 degrees to 15 degrees. Also, it was observed that a low and uniform temperature distribution was achieved at an oxygen velocity of 400 m/s. The perfectly invisible oxy-MILD flame was observed experimentally under the condition of a nozzle angle of $10^{\circ}$ and an oxygen velocity of 400 m/s. Moreover, the NOx emission limit was satisfied with NOx regulation of less than 80 ppm.

스파아크 점화기관의 흡기습도에 대한 화염속도 및 연소의 변화 (Change in flame velocity and combustion with inlet air humidity on the spark ignition engine)

  • 김문헌;이성열
    • 오토저널
    • /
    • 제5권4호
    • /
    • pp.41-46
    • /
    • 1983
  • The influence of inlet air humidity on the flame velocity and combustion of the spark ignition engine were described experimentally by means of the flame velocity measuring apparatus using ion-current. The flame velocity are greatly influenced air fuel ratio and engine speed, and linealy decrease according to the increasing of inlet air humidity. The flame travell curve is very similar to the rate of mass burned and combustion progressive is estimated mostly by only the rate of mass burned curve. The decreasing of the mean flame velocity is about 0.4m/s for increasing of 0.001 specific humidity and we think the reason is mainly decreasing of thermal conductivity.

  • PDF

COMBUSTION CHARACTERISTICS AND HEAT FLUX DISTRIBUTION OF PREMIXED PROPANE MIXTURE IN A CONSTANT VOLUME COMBUSTION CHAMBER

  • PARK K. S.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.79-85
    • /
    • 2005
  • This work is to investigate the surface heat flux and combustion characteristics of premixed propane mixture in a constant volume chamber. The experiment of heat flux and combustion characteristics of premixed propane mixture are performed with various equivalence ratio and initial pressure conditions. Based on the experimental results, it is found that the maximum instantaneous temperature is increased with the increase of initial pressure in the chamber. There are significant differences in the burning velocity of premixed propane mixture at different measuring points in the constant volume combustion chamber. A]so, the trends of temperature difference at each measuring points are similar to the burning velocity in the combustion chamber. It is concluded that the total heat loss during the combustion period is affected by the equivalence ratio and the initial condition of fuel-air mixture.

공탑속도 및 과잉공기비에 따른 석탄유동층연소로의 조업특성 (Effect of Excess Air and Superficial Air Velocity on Operation Characteristics in a Fluidized Bed Coal Combustor)

  • 장현태;차왕석;태범석
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.84-92
    • /
    • 1999
  • The effects of air velocity and excess air on combustion characteristics were studied in a fluidized bed combustor. The domestic low-grade anthracite coal with heating value of 2010 kcal/kg and the imported bituminous coal from Australia with heating value of 6520 kcal/kg were used as coal samples. The combustion characteristics of mixed fuels in a fluidized bed combustor could be interpreted by pressure fluctuation properties, ash distribution and gas emission. The properties of the pressure fluctuations, such as the standard deviation, cross-correlation function, dominant frequency and the power spectral density function, were obtained from the statistical analysis. From this study, the combustion region increased with increasing air velocity but decreased with excess air due to combustion characteristics of anthracite and bituminous coal.

  • PDF