• Title/Summary/Keyword: Combustion test

Search Result 1,375, Processing Time 0.047 seconds

A Study on the Risk of Particulate Materials Included in the Combustion Products of Building Materials (건축재료 연소생성물에 포함된 입자상 물질의 위험성에 관한 연구)

  • Kim, Nam-Kyun;Cho, Nam-Wook;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • In this study, the experiment to confirm the risks of particulate material was carried out as a precedent study for developing the toxicity evaluation method of combustion products including the toxicity of particulate material. In the experiment, the test result of filtering and exposing particulate material among combustion products and that of exposing combustion products including particulate material were compared and analyzed by analyzing changes in average movement stop time according to the installation of Membrane filter between the stirring box and test box through the gas toxicity test of the same specimen to filter particulate material among combustion products. As the test result, in case of installing a filter, the average movement stop time of an experimental rat increased by up to 264% in case of lumber specimen and up to 179% in case of urethane specimen. Through such result, the necessity of identifying the toxicity of particulate material and carrying out quantitative toxicity test for particulate material was confirmed.

The Power-pack combustion test and Evaluatin of Technology Demonstraion Model for Sataged Combustion Cycle Engine (다단연소엔진 기술검증시제 파워팩 시험 평가)

  • Jeon, Junsu;Kim, Seungryong;Kim, Sunghyuk;Kim, Seunghan;Kim, Chaehyoung;Seo, Daeban;So, Younseok;Woo, Seongphil;Lee, Kwangjin;Yi, Seungjae;Lee, Jungho;Im, Jihyuk;Yu, Byungil;Cho, Namkyung;Hwang, Changhwan;Han, Yeoungmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.104-107
    • /
    • 2017
  • The power-pack combustion test of technology demonstration model(TDM0) for 9 tonf-class staged combustion cycle engine development was conducted in the Upper-stage Engine Test Facility(UETF) of Naro Space Center. The power-pack model of TDM0 was composed of a pre-burner, a turbo-pump and propellant supply systems without a main combustor. In the power-pack combustion test, we confirmed the linked working condition and verified the main functional variation of the power-pack for the engine system test.

  • PDF

Oxy-fuel Combustion Boiler for $CO_2$ capturing:50 kW Class Model Test and Numerical Simulation (순산소 연소를 채택한 $CO_2$ 회수형 보일러의 성능특성:50kW급 모형 실험 및 수치해석)

  • Ahn, Joon;Kim, Hyouck-Ju;Choi, Kyu-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3276-3281
    • /
    • 2007
  • A novel oxy-fuel burner for a boiler has been devised and composed into a 50 kW class boiler system. A series of test has been conducted to show the characteristics of combustion, exhaust gas and the boiler. Numerical simulations have been also performed and validated against the experimental data to discuss detailed physics. The oxy-fuel burner can effectively heat the combustion chamber with the significantly reduced combustion gas, which enables to realize the compactness of the system. The composition of exhaust gas reveals that the sealing of the system is crucial to achieve high $CO_2$ concentration and low $NO_X$ emission.

  • PDF

Flame Image Analysis Systems for Combustion Conditions Monitoring (연소상태 감시용 화염 영상분석 시스템)

  • 백운보;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.499-502
    • /
    • 2003
  • Increase energy costs have placed demands for improved combustion efficiency, high equipment availability, low maintenance and safe operation. Simultaneously low NOx modification, installed due to stricter environmental legislation, require very careful combustion management. We aimed at gaining the relationship between burner flame image and emissions such as NOx and unburned carbon in furnace by utilizing the image processing method. For the first step of development, its possibility test was undertaken with bench furnace. The test proceeded to the second step with pilot furnace, the system was observed to be effective for evaluating the combustion conditions. By using this technology, it is possible to perform continuous monitoring of the combustion conditions and instant detection of individual changes for each burner to prevent future loss of ignition.

  • PDF

Characteristics of Hypersonic Airbreathing Propulsion System and Preliminary Design of Supersonic Combustion Tunnel (극초음속 추진기관의 특성 및 초음속 연소 풍동 기초 설계)

  • 김정용;허환일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.35-38
    • /
    • 2001
  • The aerothermodynamic characteristics of SCRamjet engine for the airbreathing populsion system of the next generation flight vehicle are described. As the flow is passing by, combustion caused the total pressure loss and the Mach number decrease, but nozzle exit velocity is large enough to produce net thrust. To simulate supersonic combustion test, preliminary design of ground-based blowdown type supersonic combustion tunnel is attained. Minimum allowable operating pressure and mass flow rate are calculated for the design Mach number of 2.5 at the test section of a supersonic combustion tunnel.

  • PDF

Experiments for Combustion Analysis of Hybrid Motor (하이브리드 모터의 연소해석을 위한 실험연구)

  • 하윤호;장선용;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.262-265
    • /
    • 2003
  • This Study is focused on the instrumenting Hybrid Rocket Motor of ACPL at Konkuk University and researching combustion instability by measuring regression rate versus oxidizer mass flux. In the result of experiment, test fire was moderate and we could acquire data of pressure, thrust, and temperature of combustion chamber. In the future, studying unsteady change of regression rate and pressure characteristic analysis of combustion chamber through hundreds of experiments should be performed. furthermore, researching characteristic velocity by taking a measurement of combustion temperature will be inevitable.

  • PDF

A Study on the Combustion Characteristic and Soot Distribution of a Common Rail Type D.I.Diesel Visualized Engine with Pilot Injection (커먼레일식 직분식 가시화 디젤엔진의 파일럿 분사 연소 및 Soot 분포 특성에 관한 연구)

  • Han, Yong-Taek;Lee, Jae-Yong;Lee, Ki-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.31-37
    • /
    • 2003
  • The objective of this work is to investigate the effect of swirl, injection pressure and pilot injection on D.I.Diesel combustion by using a transparent engine system. The test engine is equipped with common rail injection system to obtain high pressure and to control injection timing and duration. In this study, the combustion analysis and steady flow test were conducted to estimate the heat release rate from in-cylinder pressure and pilot injection was investigated by using LII technique. As the results, high injection pressure was found to shorten ignition delay as well as enhance peak pressure and heat release rate was greatly affected by injection timing and pilot injection. In addition, the results showed that the period of soot formation corresponded to the diffusion flame.

  • PDF

Optimal Design and Test of Fuel-Rich Gas Generator

  • Lee, Changjin;Kwon, Sun-Tak
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.560-564
    • /
    • 2004
  • The optimal design and combustion analysis of the gas generator for Liquid Rocket Engine (LRE) were performed. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton$_{f}$ in thrust with RP-1/Lox propellant. The optimal design was done for maximizing specific impulse of main combustion chamber with constraints of combustion temperature and power matching required by turbopump system. Design variables were selected as total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design show the dimension of length, diameter, and contraction ratio of gas generator. Also, the combustion test was conducted to evaluate the performance of injector and combustion chamber. And the effect of the turbulence ring was investigated on the mixing enhancement in the chamber.r.

  • PDF

Co-combustion of Bituminous Coal with Anthracite in a Down-firing, 200 MW Boiler

  • Park, Ho Young;Baek, Se Hyun;Kim, Young Joo;Kim, Tae Hyung;Kim, Hyun Hee;Lim, Hyun Soo;Park, Yoon Hwa
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.93-97
    • /
    • 2015
  • The combustion tests for Korean anthracite-bituminous coal blend were carried out in the 200 MW utility boiler. The burning characteristics of the blend were studied with a thermogravimetric analyzer (TGA). From the observation of TGA burning profiles, it was found that the presence of bituminous coal in the blend appeared to enhance the reactivity of anthracite in the higher temperature region, indicating certain interactions between the two coals. The plant test showed the boiler operation was reasonably stable with somewhat poor combustion efficiency, and some modification of the combustion environment in the furnace is necessitate for the further stable plant operation.

Combustion Characteristics of Diesel Spray Impinging on a Glow Plug in RCEM (급속압축팽창장치에서의 글로우 플러그 충돌분무의 연소 특성)

  • Kim, C.H.;Kim, J.W.;Park, K.H.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-34
    • /
    • 1997
  • Circumstances require improving diesel engine, and many studies have been done in constant volume chamber(CVC). Because the combustion mechanism of a diesel engine has many difficulties with non-homogeneous nature, there has been a limitation to analyzing the combustion mechanism with CVC. Studies are often given in a real engine, but also it has difficulties in modifying configuration of combustion chamber etc. To get more easy way for mote engine-like test, a rapid compression mechanism has been introduced. This study addresses to designing a rapid compression expansion machine(RCEM) driven by compressed air, and to applying it on IDI diesel combustion chamber which has a glow plug. RCEM is introduced first and its characteristics are tested, then spray/combustion characteristics of diesel spray impinging on a glow plug in RCEM combustion chamber are investigated. The results show active combustion in the system employing spray impinging on a glow plug so as to improve combustion efficiency.

  • PDF