• Title/Summary/Keyword: Combustion parameter

Search Result 208, Processing Time 0.029 seconds

A Study of the Experiment and the Calculation Method on the Coolant Flow Rate of Engine and Vehicle Cooling System (엔진 및 차량냉각계의 냉각수유량 측정실험 및 계산방법에 관한 연구)

  • 오창석;유택용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.1-7
    • /
    • 1999
  • In this study, the prediction method of coolant flow rates has been developed and applied to an engine and vehicle cooling system. The flow rate passing through each component of the system is very important parameter to evaluate the heat transfer process form the combustion gas to the coolant and the heat rejection process form the radiator /heater to the ambient air. However, the present study reveals that the measurement using the flowmeter fails to give practical flow rates due to its additive resistance. In contrast, the present method which uses the parallel and serial relationship of flow resistance proved to be a good tool to predict the real flow rates. It can be also used to design the cooling system in the incipient stage of engine/vehicle development . The procedure was coded to the computer program so as to use it flexibly and, in the future, to expand it into an independent design tool of the whole cooling system including the heat release and rejection.

  • PDF

Comparison Study on System Design Parameters of Gas Generator Cycle Liquid Rocket Engine (가스발생기 사이클 액체로켓엔진의 시스템 설계 인자 비교)

  • Nam Chang-Ho;Park Soon-Young;Moon Yoon-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.220-223
    • /
    • 2005
  • System design parameters of gas generator cycle liquid rocket engines were investigated and compared in the present study. Characteristic velocity of combustor, pressure drop of combustor injector, exit pressure of pump, pump efficiency and specific power of turbine were considered as a system design parameter. The result shows the characteristic velocity is in the range of 1700-1770 m/s, pressure drop of combustor injector, 4-10 bar, pump exit pressure ratio to combustion pressure, 120-230%, pump efficiency, 60-80%, specific power of turbine, $0.28-0.58MW{\cdot}s/kg$.

  • PDF

First Moment Closure Simulation of Floating Turbulent Premixed Flames in Stagnation Flows (정체 유동장에 떠있는 난류 예혼합 화염의 일차 모멘트 닫힘 모사)

  • Lee, Eun-Ju;Huh, Kang-Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.122-132
    • /
    • 2000
  • Computational fluid dynamic simulation is performed for the floating turbulent premixed flames stabilized in stagnation flows of Cho et al. [1] and Cheng and Shepherd [2]. They are both in the wrinkled flamelet regime far from the extinction limit with $u'/S^{0}_{L}$ less than unity. The turbulent flux is given in the first moment closure as a sum of the classical gradient flux due to turbulent motions and the countergradient flux due to thermal expansion. The parameter $N_{B}'s$ are greater than unity with the countergradient flux dominant over the gradient flux. The countergradient flux is assumed to be zero in $\bar{c}<0.05$. The flame surface density is modeled as a symmetric parabolic function with respect to $\bar{c}$. The product of the maximum flame surface density and the mean stretch factor is considered as a tuning constant to match the flame location. Good agreement is achieved with the measured $\tilde{w}$ and $\bar{c}$ profiles along the axis in both flames.

  • PDF

Spray characteristics of liquid-swirl/gas-jet coaxial injectors (액체스월-기체제트 동축 분사기의 분무특성)

  • Jeon, Jae-Hyoung;Hong, Moon-Guen;Kim, Jong-Gyou;Han, Yeoung-Min;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.82-85
    • /
    • 2009
  • In the development of Liquid Rocket Engine(LRE) systems, it is essential to understand the spray characteristics which influence mainly the performance and the stability of combustion. The injectors for this study have a recessed Liquid-swirl/Gas-centered jet coaxial type. For the similarity with actual conditions, the experimental conditions are calculated by using the momentum ratio as a matching parameter, and the stimulants of fuel and oxidizer are gaseous nitrogen and water respectively. The spray fields were measured by means of a photographic technique. Moreover, an effect of the momentum ratio has been investigated.

  • PDF

Numerical Study on the Thermophoretic Deposition Characteristics of Soot Particles for Wall Temperature of Burner and Surrounding Air Temperature in Combustion Duct (버너의 벽면온도와 연소실내 주위공기온도에 따른 매연입자의 열영동 부착 특성에 관한 수치적 연구)

  • Choi, Jae-Hyuk;Han, Won-Hui;Yoon, Doo-Ho;Yoon, Seok-Hun;Chung, Suk-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • The characteristics of soot deposition on the cold wall in laminar diffusion flames have been numerically analyzed with a two-dimension with the FDS (Fire Dynamics Simulator). In particular, the effects of surrounding air temperature and wall temperature have been discussed. The fuel for the flame is an ethylene ($C_2H_4$). The surrounding oxygen concentration is 35%. Surrounding air temperatures are 300K, 600K, 900K and 1200K. Wall temperatures are 300K, 600K and 1200K. The soot deposition length defined as the relative approach distance to the wall per a given axial distance is newly introduced as a parameter to evaluate the soot deposition tendency on the wall. The result shows that soot deposition length is increased with increasing the surrounding air temperatures and with decreasing the wall temperature. And the numerical results led to the conclusion that it is essential to consider the thermophoretic effect for understanding the soot deposition on the cold wall properly.

Measurement of the fuel distribution in a scaled ATR combustor using PLIF (PLIF를 이용한 ATR 연소기 축소모형의 연료분포 측정연구)

  • Jin Yu-In;Yang In-Young;Choi Young-Hwan;Yang Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.55-65
    • /
    • 2005
  • Mixing performance between fuel and oxidizer is a significant parameter of combustion efficiency and stability in an air-turbo ramjet combustor. Two types of petal mixer were experimented to research the mixing performance. Mixing performance and fuel distribution images were obtained for petal mixers. Planar laser-induced fluorescence(PLIF) was used to obtain 2-D fuel distribution. The obtained images were processed in order to make use of the image information to a quantitative level. The results of analyzing the fluorescence images could be useful to find better mixing performance between mixers.

Analysis of In-cylinder Flow in a Miller Cycle Engine with Variable IVC for HEV (밀러사이클 적용 HEV 엔진 실린더의 가변흡기밸브 닫힘각에 따른 실린더내 유동해석)

  • Kim, Sangmyeong;Sung, Gisu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • For reduction of $CO_2$ emission emitted from combustion engine, the developed nations have been focused on R&D of hybrid electric vehicle. Further more, many automobile companies are researching on various techniques related to engine used in HEV to enhance fuel economy. One of key techniques is miller cycle that control a valve timing to reduce compression stroke for saving energy and increase expansion stroke for high power. In this study, it was investigated the in-cylinder flow characteristics of miller cycle with variable intake valve timing by using the ANSYS simulation code. For simulation, the key analytic parameter defined as intake valve closing timing and cam profile. As main results, it was shown that LIVC cause a lower pressure inside cylinder and had better control turbulence intensity.

An Investigation of Design Parameter and Atomization Mechanism for Air Shrouded Injectors

  • Lee, Ki-Hyung;Lee, Chang-Sik;Kim, Bong-Gyu;Jeong, Hae-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.751-757
    • /
    • 2003
  • With increasing requirements for the less harmful exhaust emissions and the better fuel economy, the conventional injectors in gasoline engines can be replaced by the air shrouded injector in order to provide improved combustion in engine operations. To find out the optimal shape of air shrouded atomizer attached to the conventional injector nozzle, the critical design parameters such as droplet size, fuel and air inlet angles, and injection angles were investigated based on experimental analyses. To explain the characteristics of fuel atomization, these experimental approaches were carried out using a Phase Doppler Particle Analyzer (PDPA) system. The droplet sizes of injected air fuel mixture were obtained by using the beam diffraction phenomenon. In order to improve the atomization effect, the various atomizers were investigated. The Saute. Mean Diameter (SMD) measured at the predetermined locations outside the atomizer represented the performance of fuel atomization. The experimental results show that the design factors and atomization mechanism needed for developing air shrouded injectors. The suggested design parameters in this paper can be a useful reference in the early design stage.

Spray characteristics of misaligned impinging injectors

  • Subedi, Bimal;Son, Min;Kim, Woojin;Choi, Jangsu;Koo, Jaye
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1257-1262
    • /
    • 2014
  • The variances of atomization characteristics with the misalignment of injectors defined as the fraction of skewness for various angles of impingement and pressure conditions were studied using the doublet impinging injectors with a like-on-like arrangement. Water was used as simulant and the spray characteristics along with the changes in the skewness were analyzed using the methods of spray image photography. Experiment was carried for the impinging nozzles of orifice diameter of 1.2 mm within Reynolds numbers ranging from $9{\times}10^3-4.5{\times}10^4$ and the fraction of skewness considered for the experiment ranges from 0.0 to 0.9 at ambient temperature condition. Flat sheet with a distinct rim produced perpendicular to the plane of impinging jets goes ondisappear and sheet appears comparatively shorterwith the increase in fraction of skewness resulting the atomization of fluid droplet very close to impingement point with decrease in breakup length and increase in spray angle up to certain extent. The maximum allowable skewness was found as the result. The skewness up to the certain extent can be considered as the parameter to control the atomization characteristics of simulant inside the combustion chamberproviding the high economic performance of fuel and time.

A Study on Steady and Unsteady Behavior of Helium Jet in the Stationary Atmosphere (헬륨 기체분류의 정상적 비정상적 거동에 관한 연구)

  • Kim, B.G.;Suh, Y.K.;Ha, J.Y.;Kwon, S.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.34-45
    • /
    • 1993
  • This study aims to analyze the mixing characteristics of hydrogen considered as a new fuel for internal combustion engines. As the physical property of helium gas is similar to that of hydrogen, helium gas was used in this study. To analyze the steady and unsteady behavior of jet, helium gas was injected into the stationary atmosphere at the normal temperature and pressure. Concentration of helium gas in the center of jet flow is in inverse proportion with axial distance from the nozzle tip. This agrees with the free jet theory of Schlichting. The relative equation for dimensionless concentration to radial/axial distance the axial distance of potential core region, the cone angle a of the jet flow and the relative equation for arriving distance of the front of jet flow to the lapse of time are obtained. But free jet theory of Schlichting in the dimensionless concentration is not in agreement with the present experimental results of the distance of the radial direction. It needs more study. When the arrival frequency of jet flow is used as a parameter, the transition area changing from unsteady flow area into steady flow area becomes gradually wider downstream, but its ratio for the whole unsteady flow area gradually decreases.

  • PDF