• Title/Summary/Keyword: Combustion flame

Search Result 2,024, Processing Time 0.023 seconds

Basis Mode of Turbulent Flame in a Swirl-Stabilized Gas Turbine using LES and POD

  • Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.29-35
    • /
    • 2001
  • Unsteady numerical study has been conducted on combustion dynamics of a lean-premixed swirl-stabilized gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) parallel architecture, large eddy simulation(LES), and proper orthogonal decomposition (POD) technique was applied. The unsteady turbulent flame dynamics are simulated so that the turbulent flame structure can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots. Those flame dynamics coincides with experimental data. In addition, basis modes of the unsteady turbulent flame are characterized using proper orthogonal decomposition (POD) analysis. The flame structure based on odd basis modes is apparently larger than that of even ones. The flame structure can be extracted from the summation of the basis modes and eigenvectors at any moment.

  • PDF

A Study on the Flame Propagation Characteristics for LPG and Gasoline fuels by Using Laser Deflection Method (레이저 굴절법을 이용한 LPG와 가솔린 연료의 화염전파 특성에 관한 연구)

  • Lee, Kihyung;Lee, Changsik;Kang, Kernyong;Kang, Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1608-1614
    • /
    • 2000
  • For the purpose of obtaining fundamental data which is needed to develope combustion system of LPG engine, we made constant volume chamber and analyzed flame propagation characteristics under different intial temperature, initial pressure and equivalence ratio which affect combustion of LPG. We investigated flame propagation speed of each fuel using laser deflection method and compared with the investigated flame propagation speed of each fuel using laser deflection method and compared with the results of image processing of flame. As a result, the maximum flame propagation speed was found at equivalence ratio 1.0 and 1.1 for LPG and gasoline, respectively. In the lean region, we can see that flame propagation speed of LPG surpasses that of gasoline. On the contrary, flame propagation speed of gasoline surpasses LPG in the rich region. As initial temperature and initial pressure were higher, flame propagation speed was faster. And, as equivalence ratio was larger and initial temperature was higher, combustion duration was shorter and maximum combustion pressure was higher.

Experimental study of the combustion emission of diffusion flame and local NO concentration change characteristics in the flame by acoustic excitation (음파 가진을 이용한 확산 화염의 연소 배기와 화염 내부의 국소 NO 농도 변화 특성에 대한 실험적 연구)

  • Bae, Sang-Hun;Oh, Sang-Heon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.137-142
    • /
    • 2001
  • The effects of acoustic excitation with various frequencies for combustion air as well as fuel on the combustion emission and local NO concentration in diffusion flame were investigated experimentally. It was studied to investigate the effects of combination between four frequencies for the fuel and various frequencies for the combustion air. The better characteristic for NO emission was revealed by acoustic exciting with frequencies for the air and the fuel excited at 0Hz and 120Hz and the generation of CO was decreased at low frequency for fuel and the excited combustion air. The amount of combustion emission could be controlled by acoustic exciting of the combustion air. And when both fuel and air are excited by some frequencies, the diffusion flame was affected by frequency which excited fuel in the middle of the flame and by air-exciting frequency at both sides of the flame. The local NO in the flame was generated much less at the condition that fuel was excited by frequencies than the condition was not.

  • PDF

In-cylinder Flame Visualization and Flame Propagation Characteristics of SI Engine by using Optimal Threshold Method (Optimal Threshold 법을 이용한 가솔린 기관의 실린더 내화염 가시화 및 화염 전파 특성에 관한 연구)

  • 김진수;전문수;윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.96-104
    • /
    • 2000
  • It is well known that combustion stability under idle and part-load conditions directly affect fuel economy and exhaust emission. In practice, there have been a lot of studies so that a significant improvement in combustion stability has been achieved in this research field. However, applying published results to the development process of mass production engine, there are still many problems which are solved previously. In this study, initial flame behavior and flame propagation characteristic were investigated statistically in order to optimize combustion chamber shapes in the development stage of mass production S.I. engine. To the purpose, the authors applied the flame image capturing system to single cylinder optical engine. The captured flame images were effectively analyzed by using the image processing program which was developed by the authors and adopted new threshold algorithm instead of conventional histogram analysis. In addition, the cylinder pressure was also measured simultaneously to compare evaluated flame results with cylinder pressure data in terms of the combustion characteristics, combustion stability, and cycle-to-cycle combustion variability.

  • PDF

Combustion Instability Analysis of LIMOUSINE Burner using LES-based Combustion Model and Helmholtz Equation (LES기반 연소모델과 Helmholtz 방정식을 이용한 LIMOUSINE 버너의 연소불안정 해석)

  • Shin, Youngjun;Jeon, Sangtae;Kim, Yongmo
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • This study has numerically investigated the flame-acoustics interactions in the turbulent partially premixed flame field. In the present approach, in order to analyze the combustion instability, the present approach has employed the LES-based combustion model as well as the Helmholtz solver. Computations are made for the validation case of the partially premixed LIMOUSINE burner. In terms of the FFT data, numerical results are compared with experimental data. Moreover, Helmholtz equation in frequency domain is solved by combining CFD field data including the flight time from a nozzle to the flame zone. Based on numerical results, the detailed discussions are made for the essential features of the combustion instability encountered in the partially premixed burner.

A Study on Combustion Characteristics of Pre-mixed $CH_4$-air by Flame Trap (플레임트랩에 의한 메탄-공기 예혼합기의 연소특성에 관한 연구)

  • Kim, Deok-Ho;Lee, Jai-Hyo;Choi, Su-Jin;Cho, Gyu-Back;Jeong, Dong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.22-28
    • /
    • 2005
  • Exhaust gas emissions from internal combustion engines are one of the major sources of air pollution. And, it is extremely difficult to increase gasoline engine efficiency and to reduce $NO_X$ and PM(particulate matter) simultaneously in diesel combustion. This paper offers some basic concepts to overcome the above problems. To solve the problems, a recommended technique is CAI(controlled auto-ignition) combustion. In this paper, a flame trap was used to simulate internal EGR(exhaust gas recirculation) effect. An experimental study was carried out to find combustion characteristics using homogeneous premixed gas mixture in the constant volume combustion chamber(CVCC). Flame propagation photos and pressure signals were acquired to verify the flame trap effect. The flame trap creates high speed burned gas jet. It achieves higher flame propagation speed and more stable combustion due to the effect of geometry and burned gas jet.

Combustion Characteristics Using a S.I. Optically Acessible Engine with SCV (SCV를 장착학 가솔린 가시화엔진에서의 연소특성)

  • 정구섭;김형준;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2001
  • This study describes the combustion characteristics under various condition of air excess ratio and ignition timing in a 2-valve gasoline optically accessible engine with swirl control valve(SCV). It adapted three different types of SCA(open ration 72.5%, 78%, 89%) to strengthen a swirl flow. Pressure data were acquired using pressure sensor to investigate the effect of swirl flow on combustion, and from these pressure data, IMEP(indicated mean effective pressure) and MFB(mass fraction burnt)were calculated to explain burn rate and flame speed. From acquired flame images, inspected the flame propagation direction, flame area, and flame centroid, Flame propagation direction was shown different tendency between with/without SCV, and flame area with SCV was faster and larger than that of conventional engine. Finally, the representative flame image at each crank angle were acquired by PDF method to verify flame growth process. It is found that strengthened swirl flow is more beneficial for faster and stable combustion.

  • PDF

A Discussion of Combustion Regime Based on Laser Tomography and Flame Structure Diagram (레이저 토모그래피와 화염구조선도에 의한 연소영역의 검토)

  • Kim, J.H.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.17-24
    • /
    • 1998
  • The combustion regime was discussed using a laser tomography and flame structure diagram. It was shown first how to represent the turbulent burning velocity and flame structural parameters in the dimensionless plane referred to as the flame structure diagram. And then, turbulent flame structure from the obtained images by laser tomography was compared with combustion regime in the Re-Da plane, one of the diagrams, specified by different researchers. As the result, the $u'/S_{L0}$ ratio at the boundary between the wrinkled laminar flame regime and reactant islands flame regime was found to be about 1.5.

  • PDF

Study on the Combustion Characteristics of Tulip Tree (Liriodendron tulipifera) for Use as Interior Building Materials

  • Min Ji KIM;Sang-Joon LEE;Sejong KIM;Myung Sun YANG;Dong Won SON;Chul-Ki KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.410-418
    • /
    • 2023
  • In this study, the combustion characteristics of the Tulip tree, which is the representative broad-leaved afforestation tree in Korea, were analyzed. The flame retardant performance of the Tulip tree was analyzed by analyzing combustion characteristics on a total of three test samples; flame retardant treated, both flame retardant and oil stain-treated, and untreated. Then the flame retardance grade was classified for each of them. According to the result, test samples showed the strongest flame retardance were in order of flame retardant treated (C), both flame retardant and oil stain-treated (B), and untreated (A). As a result of analyzing the total heat emission and maximum heat emission rates, which is the evaluation standard for interior materials of Korean domestic buildings, test samples with flame retardant treat or flame retardant and oil stain treat were qualified for the flame-retardant standard. Both flame retardant and oil stain-treated samples showed higher total heat release (THR) and heat release rate compared to flame retardant-treated samples as the oil causes combustion with oxygen. On the other hand, they didn't qualify the THR in Quasi-non-combustible standards. To determine the correlation between the physical and combustion characteristics of wood, the combustion characteristics of other diffuse porous wood species, with which the Tulip tree is affiliated were analyzed, and noticed that the characteristic correlates with the density and quantity of wood. The results of this study are expected to be used as basic information on the combustion characteristics of the Tulip tree.

Effects of Combustion Atmosphere Pressure on Non-premixed Counterflow Flame (비예혼합 대향류 화염에서 연소 분위기 압력 영향 연구)

  • Lee, Kee-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.853-862
    • /
    • 2006
  • The present study is numerically investigated the flame structure of non-premixed counterflow jet flames using the laminar flamelet model Detailed flame structures with the fuel composition of 40% CO, 30% $H_2$. 30% $N_2$ and an oxidizer composition of 79% $N_2$ and 21% $O_2$ in a non-premixed counterflow flame are studied numerically. This study is aimed to investigate the effects of axial velocity gradient and combustion atmosphere pressure on flame structure. The results show that the role of axial velocity gradient on combustion processes is globally opposite to that of combustion atmosphere pressure. That is, chemical nonequilibrium effects become dominant with increasing axial velocity gradient, but are suppressed with increasing ambient pressure. Also, the flame strength is globally weakened by the increase of axial velocity gradient but is augmented by the increase of ambient pressure. However, flame extinction is described better on the basis of only chemical reaction and in this study axial velocity gradient and ambient pressure play a similar role conceptually such that the increase of axial velocity gradient and ambient pressure cause flame not to be extinguished and extend the extinction limit, respectively. Consequently it is suggested that a combustion process like flame extinction is mainly influenced by the competition between the radical formation reaction and the third-body recombination reaction.