• Title/Summary/Keyword: Combustion enhancement rate

Search Result 29, Processing Time 0.021 seconds

Optimal Design and Test of Fuel-Rich Gas Generator

  • Lee, Changjin;Kwon, Sun-Tak
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.560-564
    • /
    • 2004
  • The optimal design and combustion analysis of the gas generator for Liquid Rocket Engine (LRE) were performed. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton$_{f}$ in thrust with RP-1/Lox propellant. The optimal design was done for maximizing specific impulse of main combustion chamber with constraints of combustion temperature and power matching required by turbopump system. Design variables were selected as total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design show the dimension of length, diameter, and contraction ratio of gas generator. Also, the combustion test was conducted to evaluate the performance of injector and combustion chamber. And the effect of the turbulence ring was investigated on the mixing enhancement in the chamber.r.

  • PDF

Enhancement of Regression Rate of Hybrid Rocket Fuel by Oxidizer Injection Condition (산화제 유입조건에 따른 하이브리드 로켓 연료의 연소율 향상)

  • Hwang Youngchun;Lee Changjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.66-71
    • /
    • 2005
  • In this study the regression rate of hybrid rocket fuel has been investigated by two methods. First method is to use swirl injectors for enhancement of regression rate. And second method is the modification of the helical grain deriving improvement of combustion area and generating swirl flow. Tests have been done with PMMA and gaseous oxygen. In this paper the incline angle of the helical grain was varied to find the optimal condition to obtain the max regression rate for a given operational condition.

  • PDF

Combustion Characteristics for Varying Flow Velocity on Methane/Oxygen Diffusion Flames (메탄 산소 확산화염에서 유속 변화에 따른 연소특성)

  • Kim, Ho-Keun;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1277-1284
    • /
    • 2005
  • The combustion characteristics of methane oxygen diffusion flames have been investigated to give basic information for designing industrial oxyfuel combustors. NOx reduction has become one of the most determining factors in the combustor design since the small amount of nitrogen is included from the current low cost oxygen production process. Flame lengths decreased with increasing fuel or oxygen velocity because of the enhancement of mixing effect. Correlation equation between flame length and turbulent kinetic energy was proposed. NOx concentration was reduced with increasing fuel or oxygen velocity because of the enhanced entrainment of the product gas into flame zone as well as the reduction of residence time in combustion zone.

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

NUMERICAL STUDY OF MIXING ENHANCEMENT EFFECT DUE TO THE CONFIGURATION RATIO OF CAVITY (Cavity 형상비에 따른 혼합 중대 효과의 수치적 연구)

  • Oh Juyoung;Bae Y.W.;Kim K.S.;Byun Y.H.;Lee J.-W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.245-248
    • /
    • 2005
  • SCRamjet is the key technology for hypersonic flight over mach number 6. It is characterized by very short residence time in combustor because its internal flow is supersonic. In this short time, the whole process of combustion must be done. Especially numerical study of combustor is important because air-fuel mixing rate influences the performance of combustor. Various methods of air-fuel mixing enhancement are proposed. Among these, cavity injection method is selected to study in this paper. The numerical study is conducted with the variation of the cavity length at the fixed height of unit and jet injection on the downstream of cavity.

  • PDF

Study on Combustion Characteristics of Thermoplastic Solid Propellants Embedded with Metal Wires (금속선이 삽입된 열가소성 추진제의 연소 특성 고찰)

  • Lee, Sunyoung;Oh, Jongyun;Lee, Hyunseob;Khil, Taeock;Kim, Minho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.21-27
    • /
    • 2022
  • In this paper, the combustion characteristics of solid propellant embedded with metal wires were analyzed by the ground tests of motors. The propellant grains were made of thermoplastic propellants with Al and Cu as metal wires for the enhancement of burning area and designed with cone shape for better ignition. These metals were used to confirm the enhancement of burning rate on thermal diffusivity properties. The internal ballistics analysis and ground test were performed to investigate the effect of burning rate for each metal wire. We obtained the results of burning rate on a difference of thermal diffusivity of each metal wire with well-made propellant grains.

Experimental Studies on Scramjet Tested in a Freejet Facility

  • Chang, Xinyu;Chen, Lihong;Gu, Hongbin;Yu, Gong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.34-40
    • /
    • 2004
  • Two different type scramjet models with side-wall compression and top-wall compression inlets have been tested in HPTF (Hypersonic Propulsion Test Facility) under the experimental conditions of Mach number 5.8, total temperature 1700K, total pressure 4.5㎫ and mass flow rate 3.5kg/s. The liquid kerosene was used as main fuel for the scramjets. In order to get fast ignition in the combustor, a small amount of hydrogen was used as a pilot. A strut with alternative tail was employed for increasing the compression ratio and for mixing enhancement in the side-wall compression case. Recessed cavities were used as a flameholder for combustion stability. The combustion efficiency was estimated by one dimensional theory. The uniformity of the facility nozzle flow was verified by a scanning pitot rake. The experimental results showed that the kerosene fuel was successfully ignited and stable combustion was achieved for both scramjet models. However the thrusts were still less than the model drags due to the low combustion efficiencies.

  • PDF

Combustion Characteristics of Volume Variation of Torch in a CVCC (토치 점화 장치의 체적에 따른 연소특성 파악)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Choi, Chang-Hyeon;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.166-170
    • /
    • 2010
  • Six different size of torch-ignition device were applied in a constant volume combustion chamber for evaluating the effects of torch-ignition on combustion. The torch-ignition device was designed six different volumes and same orifice size. The combustion pressures were measured to calculate the mass burn fraction and combustion enhancement rate. In addition, the flame propagations were visualized by shadowgraph method for the qualitative comparison. The result showed that the combustion pressure and mass burn fraction were increased when using the torch ignition device. And the combustion duration were decreased. The combustion enhancement rates of torch-ignition cases were improved in comparison with conventional spark ignition. Finally, the visualization results showed that the torch-ignition device the torch-ignition induced faster burn than conventional spark ignition due to the earlier transition to turbulent flame and larger flame surface, during the initial stage. And the initial flame propagation was effected torch-ignition volume.

  • PDF

A Linear Stability Analysis of Unsteady Combustion of Solid Propellants (고체추진제 비-정상연소의 선형 안정성해석)

  • 이창진;김성인;변영환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.59-66
    • /
    • 1998
  • The combustion instability analysis of solid propellants is generally done by the simplified governing equations for chemically inert condensed phase region with QSHOD assumption. Since the gas phase and surface reaction layer can be more rapidly relaxed to the external perturbations than the condensed phase, these regions are treated as quasi-steady manner in the analysis. In this paper, the classical ZN(Zeldovic-Novozhilov)approach was re-examined with the presence of radiation augmented burning enhancement in the combustion. Also, the surface reaction was assumed to partially absorb the incident radiant heat fluxes and pass the remaining to the chemically inert condensed phase. As a result of the analysis, the burning rate response function was obtained which consists of a pressure response function and a radiation response function. The response function was shown to be able to predict the results of T-burner tests.

  • PDF

Optimal Design and Combustion Analysis of Fuel-rich Gas Generator for Liquid Rocket Engine Based on RP-1 fuel (RP-1연료를 사용한 농후연소 가스발생기의 최적설계 및 연소해석)

  • 권순탁;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.258-261
    • /
    • 2003
  • The optimal design and combustion analysis of the gas generator for Liquid Rocket Engine (LRE) were performed. A fuel-rich gas generator in open cycle turbopump system was designed for 101on1 in thrust with RP-1/LOx combination. The optimal design was done for maximizing specific impulse of main combustion chamber with constraints of combustion temperature and power matching in turbopump system. Results of optimal design show the dimension of length, diameter, and contraction ratio of gas generator. The configuration of the gas generator and the condition for performance which can maximize the objective function were determined and found to meet the design constraints. Also, the combustion analysis was conducted to evaluate the performance of designed chamber and injector of gas generator. And the effect of the turbulence ring was investigated on the mixing enhancement in the chamber.

  • PDF