• Title/Summary/Keyword: Combustion condition

Search Result 1,152, Processing Time 0.029 seconds

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(1) - Comparison of Throttling and Masking (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(1) - 스로틀링과 마스킹의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.156-165
    • /
    • 2014
  • This paper is the first investigation on the effect of flow control methods on the part load performance in a spark ignition engine. For comparison of the methods, two control devices, port throttling and masking, were applied to a conventional engine without any design change of the intake port. Steady flow evaluation shows that steady flow rates per unit opening area and swirl ratio are very low compared with the port throttling and saturated from mid-stage valve lift, however, swirl increases slightly as the lift is higher in case of 1/4 masking control. In the part load performance, the effect of simple port throttling on lean misfire limit expansion is limited and insufficient; on the other hand a masking improves the limit considerably without any port modification for increasing swirl. Also the results show that the intake flow control improves the combustion with following two mechanisms: stratification induced by the combination of the flow pattern and the fuel injection timing attribute to ignition ability and the intensified flow ensure fast burn. In addition fuel consumption reduces under the flow controls and the reduction rate is different according to the operation conditions and control methods. At the Stoichiometric and/or low speed and low load the throttling method is more advantageous; however vice versa at lean and high load condition. Finally, the throttling is more efficient for HC reduction than masking, on the other side the NOx emissions increase under the masking and decrease under the port throttling compared with conventional port scheme.

A Study of Ignition Performance on the Annular Combustor with Rotating Fuel Injection System (회전분무시스템을 가진 환형연소기의 점화성능 연구)

  • Lee, Gang-Yeop;Lee, Dong-Hun;Choe, Seong-Man;Park, Jeong-Bae;Kim, Hyeong-Mo;Park, Yeong-Il;Go, Yeong-Seong;Han, Yeong-Min;Yang, Su-Seok;Lee, Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.60-65
    • /
    • 2003
  • An experimental study was performed to understand ignition characteristics of gas turbine combustor with rotating fuel injection system. Liquid fuel applied to the inner surface of rotating fuel nozzle which was driven by high speed electrical motor is flung away by centrifugal forces. The real scale combustor and test rig was manufactured and tested under atmospheric condition in KARl combustion test facility. From the test results, this combustor ignition characteristics are highly dependent upon fuel nozzle rotating speed. Futhermore, combustor exit gas temperature was rapidly changed by increasing or decreasing the fuel nozzle rotating speed.

Change in Physical Properties of Engine oil Contaminated with Diesel (경유 혼입에 의한 엔진오일 물성 변화)

  • Lim, Young-Kwan;Lee, Jong-Eun;Na, Yong-Gyu;Kim, Jong-Ryeol;Ha, Jong-Han
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.45-51
    • /
    • 2017
  • Engine oil is a substance used for the lubrication of internal combustion systems. However, in some case, defects in engine systems may contaminate engine oil with fuel. Contaminated engine oil can cause problems in the normal functioning of a vehicle. In this study, we investigate the functional properties of engine oil contaminated with diesel fuel. The test results indicate that the engine oil contaminated with diesel fuel has low flash point, pour point, density, kinematic viscosity and cold cranking simulator value. The contaminated engine oil which has low plash point can cause fire and explosion accident. Furthermore, a four ball test indicates that the contaminated engine oil increases wear scar to poor lubricity. Moreover, we investigate the GC pattern using SIMDIST (simulated distillation) for determination of diesel in engine oil. The SIMDIST analytic result, diesel was detected at earlier retention time than engine oil in chromatogram. Thus the SIMDIST method can define whether engine oil is contaminated by diesel fuel or not. We can use the SIMDIST method for the diagnosis of oil condition instead of analyzing other physical properties that require many analytic instruments, large volume of oil sample and long analysis time.

Knock Characteristic Analysis of Gasoline and LPG Homogeneous Charge Compression Ignition Engine (가솔린과 LPG 예혼합 압축 착화 엔진의 노킹 특성)

  • Yeom, Ki-Tae;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.54-62
    • /
    • 2007
  • The knock characteristics in an engine were investigated under homogeneous charge compression ignition (HCCI) operation. Liquefied petroleum gas (LPG)and gasoline were used as fuels and injected at the intake port using port fuel injection equipment. Di-methyl ether (DME) was used as an ignition promoter and was injected directly into the cylinder near compression top dead center (TDC). A commercial variable valve timing device was used to control the volumetric efficiency and the amount of internal residual gas. Different intake valve timingsand fuel injection amounts were tested to verify the knock characteristics of the HCCI engine. The ringing intensity (RI) was used to define the intensity of knock according to the operating conditions. The RI of the LPG HCCI engine was lower than that of the gasoline HCCI engine at every experimental condition. The indicated mean effective pressure (IMEP) dropped when the RI was over 0.5 MW/m2and the maximum combustion pressure was over 6.5MPa. There was no significant relationship between RI and fuel type. The RI can be predicted by the crank angle degree (CAD) at 50 CA. Carbon monoxide (CO) and hydrocarbon (HC) emissions were minimized at high RI conditions. The shortest burn duration under low RI was effective in achieving low HC and CO emissions.

The Effect of In-Outlet Differential Pressure on a Valve Body Stress and Deformation by the Blow-by Gas Flow Characteristic in the PCV valve for Automobile (자동차용 PCV밸브내 유통특성에 의한 밸브응력 및 변형에 미치는 입출구 차압의 영향)

  • Kwon Oh-Heon;Lee Yeon-Won;Song Sang-Min;Lee Jong-Hoon;Kang Ji-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.36-41
    • /
    • 2005
  • PCV(Positive Crankcase Ventilation) valve acts as a flow control valve to get a re-combustion of blow-by gas by having it flow from a crankcase to an inlet manifold suction tube. The blow-by gas of the crankcase should be eliminated or taken properly because it cause corrosion to critical parts, and contributes to increase crankcase pressure that can cause a drop in efficiency. The excessive stress and strain on the PCV valve that remove these harmful gas would be bring the difficult on the flow rate control and failure of the valve. Those condition inevitably induce the accident. Therefore, this study purpose is FEM evaluation of the stresses and deformation in the X3 PCV model according to the change of the differential pressure between inlet and outlet. From results, the maximum equivalent stresses increased linearly according to the increase of the differential pressure at the about 50mm from the inlet position and were under the yield strength of the valve. And the deformations were relatively small regardless of the in-outlet differential pressure variation.

A Experimental Study of Oxidation Kinetics for a Sub-Bituminous Coal Char (아 역청탄 촤 산화 반응속도론에 관한 실험적 연구)

  • Kang, Ki-Tae;Song, Ju-Hun;Lee, Chuen-Sueng;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.239-246
    • /
    • 2009
  • A fundamental investigation has been conducted on the combustion of single particle of a sub-bituminous coal char burning at different temperatures and residence times. The lab-scale test setup consisted of a drop tube furnace where gas temperatures varied from $900^{\circ}C$ to $1400^{\circ}C$. A calibrated two color pyrometer, mounted on the top of the furnace, provided temperature profiles of luminous particle during a char oxidation. An amount of char mass reacted during the reaction is measured with thermogravimetry analyzer by using an ash tracer method. As a result, mass and area reactivity as well as reaction rate coefficients are determined for the char burning at atmospheric pressure condition.

Reaction Parameters on the Reactivity in the Preparation of B4C by SHS (자전연소합성법에 의한 B4C분말의 제조에 있어 반응성에 대한 반응변수의 고찰)

  • Shin, Chang-Yun;Yun, Ki-Seok;Park, Yeong-Cheol;Hayk, Nersisyan;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.22-27
    • /
    • 2005
  • The preparation of B4C by SHS in $B_{2}O_{3}-Mg-C$ system was investigated in this study. In the preparation of B4C, the effect on reactivity and reaction products of the initial pressure of inert gas in reactor, the content of Mg and C in mixture was investigated. The minimum initial pressure of inert gas in reactor for SHS reaction in this system was 25 atm, and as the pressure increased, the concentration of unreacted Mg decreased and combustion temperature increased. At the initial inert gas pressure in reactor of 25 atm, the optimum composition for the preparation of pure B4C was $2B_{2}O_{3}+6.3Mg +0.94C$. The B4C synthesized in this condition had an irregular shape and the particle size of $1\~3{\mu}m$.

1-D Model to Estimate Injection Rate for Diesel Injector using AMESim (디젤 인젝터 분사율 예측을 위한 AMESim 기반 1-D 모델 구축)

  • Lee, Jinwoo;Kim, Jaeheun;Kim, Kihyun;Moon, Seoksu;Kang, Jinsuk;Han, Sangwook
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, 1-D model-based engine development using virtual engine system is getting more attention than experimental-based engine development due to the advantages in time and cost. Injection rate profile is the one of the main parameters that determine the start and end of combustion. Therefore, it is essential to set up a sophisticated model to accurately predict the injection rate as starting point of virtual engine system. In this research, procedure of 1-D model setup based on AMESim is introduced to predict the dynamic behavior and injection rate of diesel injector. As a first step, detailed 3D cross-sectional drawing of the injector was achieved, which can be done with help of precision measurement system. Then an approximate AMESim model was provided based on the 3D drawing, which is composed of three part such as solenoid part, control chamber part and needle and nozzle orifice part. However, validation results in terms of total injection quantity showed some errors over the acceptable level. Therefore, experimental work including needle movement visualization, solenoid part analysis and flow characteristics of injector part was performed together to provide more accuracy of 1-D model. Finally, 1-D model with the accuracy of less than 10% of error compared with experimental result in terms of injection quantity and injection rate shape under normal temperature and single injection condition was established. Further work considering fuel temperature and multiple injection will be performed.

A Stability Study of Rider Arch under the Increased Load of Checker Brick in Regernerator of the Reformed Glass Melting Furnace (유리 용해로 축열실 상재 하중 증가에 따른 Rider Arch의 안전성 검토)

  • Lee, Sun-Yung;Kim, Jong-Ock;Lim, Dae-Young;Kim, Taik-Nam;Park, Won-Kya
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.125-131
    • /
    • 1997
  • The regenerator is important part of the glass melting furnace to increase the temperature of the intake air through the combustion flame. The insulation, checker brick, prevention of the air leak has been studied to decrease the fuel consumption in glass melting industries. Thus the new types of checker brick and the design of the rider arch has been studied to prolong the life of the glass melting furnace. The height of the regenerator increased from 5.64 m to 7.89 m in the reforming of the glass melting furnace. Thus the stability of the rider arch is studied under the condition of increased load of checker brick in this research. The rider arch was estimated to be stable inspite of the increase of load according to the calculation. The max. sustained compressive stress of the rider arch is 163 kg/$cm^2$ and the max. sustained shear stress is 6.37 kg/$cm^2$.

  • PDF

Effect of Heat Treatment on Interface Behavior in Ni-P/Cr Double Layer (열처리 시간에 따른 Ni-P/Cr 이중 도금 층의 계면 거동에 관한 연구)

  • Choi, Myung-Hee;Park, Young-Bae;Rhee, Byong-ho;Byon, Eungsun;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.260-268
    • /
    • 2015
  • The thermal barrier coating (TBC) for inner wall of liquid-fuel rocket combustor consists of NiCrAlY as bonding layer and $ZrO_2$ as a top layer. In most case, the plasma spray coating is used for TBC process and this process has inherent possibility of cracking due to large difference in thermal expansion coefficients among bonding layer, top layer and metal substrate. In this paper, we suggest crack-free TBC process by using a precise electrodeposition technique. Electrodeposited Ni-P/Cr double layer has similar thermal expansion coefficient to the Cu alloy substrate resulting in superior thermal barrier performance and high temperature oxidation resistance. We studied the effects of phosphorous concentrations (2.12 wt%, 6.97 wt%, and 10.53 wt%) on the annealing behavior ($750^{\circ}C$) of Ni-P samples and Cr double layered electrodeposits. Annealing temperature was simulated by combustion test condition. Also, we conducted SEM/EDS and XRD analysis for Ni-P/Cr samples. The results showed that the band layers between Ni-P and Cr are Ni and Cr, and has no formed with heat treatment. These band layers were solid solution of Cr and Ni which is formed by interdiffusion of both alloy elements. In addition, the P was not found in it. The thickness of band layer was increased with increasing annealing time. We expected that the band layer can improve the adhesion between Cr and Ni-P.