• Title/Summary/Keyword: Combustion carbon

Search Result 840, Processing Time 0.031 seconds

Analysis of Carbon Emissions According to Combustion of Tree Branch, Bark and Living Leaf in Pinus Densiflora (소나무 부위별 연소에 따른 탄소배출량 분석)

  • Park, Young-Ju;Kim, Min-Jung;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.385-389
    • /
    • 2010
  • 본 연구에서는 산불발생 시 온실가스의 배출량을 추정하기 위한 기초 연구로서 산림연료의 연소에 따른 탄소배출량을 분석하였다. 산림연료는 소나무를 대상으로 생엽, 가지, 수피 등 부위별로 연소실험을 수행하였으며, 콘칼로리미터를 이용하여 일산화탄소와 이산화탄소의 배출량을 분석하였다. 중량 50g의 연료 기준, 일산화탄소의 배출량은 1.8~4.0g 정도였으며, 이산화탄소의 배출량은 49.3~84.7g 정도를 나타냈다. 부위별로 큰 차이를 나타냈는데 수피는 생엽과 가지보다 상대적으로 많은 일산화탄소와 이산화탄소를 배출하는 것으로 나타났다.

  • PDF

A Study on the Lifetime Prediction of Lithium-Ion Batteries Based on the Long Short-Term Memory Model of Recurrent Neural Networks

  • Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.236-241
    • /
    • 2024
  • Due to the recent emphasis on carbon neutrality and environmental regulations, the global electric vehicle (EV) market is experiencing rapid growth. This surge has raised concerns about the recycling and disposal methods for EV batteries. Unlike traditional internal combustion engine vehicles, EVs require unique and safe methods for the recovery and disposal of their batteries. In this process, predicting the lifespan of the battery is essential. Impedance and State of Charge (SOC) analysis are commonly used methods for this purpose. However, predicting the lifespan of batteries with complex chemical characteristics through electrical measurements presents significant challenges. To enhance the accuracy and precision of existing measurement methods, this paper proposes using a Long Short-Term Memory (LSTM) model, a type of deep learning-based recurrent neural network, to diagnose battery performance. The goal is to achieve safe classification through this model. The designed structure was evaluated, yielding results with a Mean Absolute Error (MAE) of 0.8451, a Root Mean Square Error (RMSE) of 1.3448, and an accuracy of 0.984, demonstrating excellent performance.

Preparation and properties of porous (Ca,Mg)0.15Zr0.7O1.7 ceramics (다공성 (Ca,Mg)0.15Zr0.7O1.7 세라믹스의 제조 및 특성)

  • Kim, Bok-Hee;Kim, Sang-Hee;Choi, Eun-Sil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.2
    • /
    • pp.70-74
    • /
    • 2011
  • [ $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ]ceramics was investigated for the application to SOFC ceramic supporter with high porosity and mechanical strength. $ZrO_2$ powder was prepared by combustion method with glycine using the solution of $ZrO(NO_3)_2{\cdot}2H_2O$ dissolved into deionized water and calcination at $800^{\circ}C$ Porous $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics was prepared by sintering the mixture of prepared $ZrO_2$ powder, dolomite and carbon black at $1200{\sim}1400^{\circ}C$ for 1 h. The open porosity ofthe $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics sintered at $1300^{\circ}C$ was over 30 % and increased linearly with the amount of carbon black. The crystal structure of $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics consisted of single cubic phase. The open pore of this ceramics was connected continuously and distributed well on the whole. This ceramics sintered at $1300^{\circ}C$ showed the porosity from 32 to 55 % and mechanical strength from 90 MPa to 30 MPa with increasing the content of added carbon black.

Aethalometer-based Estimate of Mass Absorption Cross Section of Black Carbon Particles at an Urban Site of Gwangju (광주 지역에서 aethalometer 측정 블랙 카본 입자의 질량흡수단면 평가)

  • Park, Seung-Shik;Yu, Geun-Hye;Lee, Sang-Il;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.727-734
    • /
    • 2018
  • In this study, real-time absorption coefficients of carbonaceous species in $PM_{2.5}$ was observed using a dual-spot 7-wavelength Aethalometer between November 1, 2016 and December 31, 2017 at an urban site of Gwangju. In addition, 24-hr integrated $PM_{2.5}$ samples were simultaneously collected at the same site and analyzed for organic carbon and elemental carbon (OC and EC) using the thermal-optical transmittance protocol. A main objective of this study was to estimate mass absorption cross section (MAC) values of black carbon (BC) particles at the study site using the linear regression between aethalometer-based absorption coefficient and filter-based EC concentration. BC particles observed at 880 nm is mainly emitted from combustion of fossil fuels, and their concentration is typically reported as equivalent BC concentration (eBC). eBC concentration calculated using MAC value of $7.77m^2/g$ at wavelength of 880 nm, which was proposed by a manufacturer, ranged from 0.3 to $7.4{\mu}g/m^3$ with an average value of $1.9{\pm}1.2{\mu}g/m^3$, accounting for 7.3% (1.5~20.9%) of $PM_{2.5}$. The relationship between aerosol absorption coefficients at 880 nm and EC concentrations provided BC MAC value of $15.2m^2/g$, ranging from 11.4 to $16.2m^2/g$. The eBC concentrations calculated using the estimated MAC of $15.2m^2/g$ were significantly lower than those reported originally from aethalometer, and ranged from 0.2 to $3.8{\mu}g/m^3$, with an average of $1.0{\pm}0.6{\mu}g/m^3$, accounting for 3.7% of $PM_{2.5}$ (0.8~10.7%). Result from this study suggests that if the MAC value recommended by the manufacturer is applied to calculate the equivalent BC concentration and radiative forcing due to BC absorption, they would result in significant errors, implying investigation of an unique MAC value of BC particles at a study site.

Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals (이산화탄소를 활용한 고부가화합물 제조기술의 경제성 평가연구)

  • Lee, Ji Hyun;Lee, Dong Woog;Gyu, Jang Se;Kwak, No-Sang;Lee, In Young;Jang, Kyung Ryoung;Choi, Jong Shin;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.347-354
    • /
    • 2014
  • Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this $CO_2$ carbonation technology is an cost-effective technology option for the reduction of greenhouse gas.

Validation for SOC Estimation from OC and EC concentration in PM2.5 measured at Seoul (서울 대기 중 PM2.5 내 OC와 EC로부터 SOC 추정방법의 비교 평가)

  • Yoo, Ha Young;Kim, Ki Ae;Kim, Yong Pyo;Jung, Chang Hoon;Shin, Hye Jung;Moon, Kwang Ju;Park, Seung Myung;Lee, Ji Yi
    • Particle and aerosol research
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2020
  • The organic carbon in the ambient particulate matter (PM) is divided into primary organic carbon (POC) and secondary organic carbon (SOC) by their formation way. To regulate PM effectively, the estimation of the amount of POC and SOC separately is one of important consideration. Since SOC cannot be measured directly, previous studies have evaluated determination of SOC by the EC tracer method. The EC tracer method is a method of estimating the SOC value from calculating the POC by determining (OC/EC)pri which is the ratio of the measured values of OC and EC from the primary combustion source. In this study, three different ways were applied to OC and EC concentrations in PM2.5 measured at Seoul for determining (OC/EC)pri: 1) the minimum value of OC/EC ratio during the measurement period; 2) regression analysis of OC vs. EC to select the lower 5-20% OC/EC ratio; 3) determining the OC/EC ratio which has lowest correlation coefficient value (R2) between EC and SOC which is reported as minimum R squared method (MRS). Each (OC/EC)pri ratio of three ways are 0.35, 1.22, and 1.77, respectively from the 1 hourly data. We compared the (OC/EC)pri ratio from 1hourly data with 24 hourly data and revealed that (OC/EC)pri estimated from 24 hourly data had twice larger than 1hourly data due to the low time resolution of sampling. We finally confirmed that the most appropriate value of (OC/EC)pri is that calculated by a regression analysis of 1 hourly data and estimated SOC amounts at PM2.5 of the Seoul atmosphere.

Analysis of Dioxins and Furans from Bottom Ash Produced in an Municipal Solid Waste Incinerator (도시 소각로 시설의 고형 쓰레기 연소 후 생성된 바닥재 시료에 대한 다이옥신과 퓨란류의 분석)

  • Chang, Yoon-Seok;Hong, JongKi;Kim, Jin-Young
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.513-523
    • /
    • 1995
  • Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) are the most concerned toxic organic pollutants to human. Because of their extremely high toxicity and uncertain genotoxic potential, their determination in environmental and biological samples is of great interest. Municipal solid waste incinerator facilities have been reported as the major contributors of dioxins and furans to the environment, and their formation from combustion is a universal phenomenon, everywhere. In this study dioxins and furans were analyzed from the bottom ash produced during combustion in an municipal waste incinerator located in Seoul. The EPA method was modified for sample pretreatment: the soxhlet method was used for extraction and clean-up procedures were performed by using silica and basic alumina, excluding active-carbon. The extract was then analyzed by HRGC/HRMS. A general trend of increase in the amounts of 6∼7 chlorine-substituted dioxins and furans was observed. Total dioxins, furans and 2,3,7,8-TCDD were determined as 8.05 ng/g, 4.75 ng/g, and 6.93 pg/g, respectively.

  • PDF

Effects of Spark Plug Changes on Performance of an SI Engine Fueled by Gaseous Fuel (스파크플러그 변화에 따른 가스 엔진 성능 변화)

  • Lee, Sunyoup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.27-32
    • /
    • 2013
  • Renewable gas fuels such as biogas and landfill gas are obtained from the biodegradable organic wastes so that they inherently have carbon-neutral nature which can respond global warming. Therefore, attentions are paid to use this renewable gases as a main fuel for internal combustion engines. However, the composition of the fuel varies by its origin or conversion process, it is necessary to make stable combustion and accomplish high efficiency when used in power generating spark ignition (SI) engines. In this study, efforts have been made to investigate the effect of the composition of renewable gas fuel on the engine performance and exhaust emissions. In addition, a new spark plug with a long electrode was tested and compared with a base spark plug as a way to improve engine efficiency and reduce harmful emissions.

Characterization of Controlled Low-Strength Materials Utilizing CO2-Solidified CFBC Coal Ash (CO2 고정화된 CFBC 석탄재를 활용한 저강도 고유동 채움재의 특성평가)

  • Cho, Yong-Kwang;Nam, Seong-Young;Lee, Yong-Mu;Kim, Chun-Sik;Seo, Shin-Seok;Jo, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1267-1274
    • /
    • 2017
  • A Controlled Low-Strength Materials (CLSM) is suitable for mine backfilling because it does not require compaction owing to it high fluidity and can be installed quickly. Therefore, a CLSM utilizing $CO_2$-solidified Circulating Fluidzed Bed Combustion (CFBC) coal ash was developed and it's properties were investigated, since. $CO_2$-solidification of CFBC coal ash can inhibit exudation of heavy metals. The chemical composition and specific surface area of Pulverized coal Combustion fly ash and CFBC fly ash were analyzed. The water ratio, compressive strength and length change ratio of CLSM were confirmed. The water ratios differed with the specific surface area of the CLSM. It was confirmed that the porosity of CLSM affected its compressive strength and length change ratio.

PAHs Formation Characteristics and Fullerenes $(C_{60},\;C_{70})$ Synthesis in a Low-Pressure $C_6H_6/Ar/O_2$ Flame (저압 $C_6H_6/Ar/O_2$ 화염에서 PAHs 생성 특성 및 플러렌$(C_{60},\;C_{70})$ 합성에 대한 연구)

  • Lee, G.W.;Kim, Y.W.;Hwang, J.;Jrung, J.;Choi, M.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.36-44
    • /
    • 2002
  • Carbon molecules with closed-cage structures are called fullerenes $(C_{60},\;C_{70})$, whose applications include super-conductors, sensors, catalysts, optical and electronic device, polymer composites, and biological and medical materials. The synthesis of fullerenes has been recently studied with low-pressure benzene/argon/oxygen flames. The formation of fullerene is known as molecular weight growth processes of PAHs (polycyclic aromatic hydrocarbon). This study presents results of PAHs and fullerene measurements performed in a low-pressure benzene/argon/oxygen normal co-flow laminar diffusion flame. Through the central tube of the burner, benzene vapors carried by argon are injected. The benzene vapors are made in a temperature-controlled bubbler. The burner is located in a chamber, equipped with a sampling system for direct collection of condensable species from the flame, and exhausted to a vacuum pump. Samples of the condensable are analyzed by HPLC (High Performance Liquid Chromatography) to determine the yields of PAHs and fullerene. Also, we computed mole fraction of fullerene and PAHs in a nearly sooting low pressure premixed, one-dimensional benzene/argon/oxygen flame (equivalence ratio ${\Phi}=2.4$, pressure=5.33kPa). The object of computation was to investigate the formation mechanism of fullerenes and PAHs. The computations were performed with CHEMKIN/PREMIX. As a result of this study, fullerenes were synthesized in a low pressure (20torr) $C_6H_6/Ar/O_2$ flames and the highest concentration of fullerene was detected just above the visible surface of a flame.

  • PDF