• Title/Summary/Keyword: Combustion carbon

Search Result 840, Processing Time 0.025 seconds

Characterization of fine organic aerosols from biomass burning emissions using FTIR method (분광학적 방법을 이용한 바이오매스 연소 배출 유기 입자의 화학적 특성)

  • Son, Se-Chang;Park, Tae-Eon;Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.125-132
    • /
    • 2021
  • Fresh PM2.5 smokes emitted from combustion of four biomass materials (pellet, palm fruit fiber (PFF), PKS, and sawdust) in a laboratory-controlled environment were characterized using an attenuated total reflectance-fourier transform infrared (ATR-FTIR) technique. In smoke samples emitted from combustion of pellets, PFF and PKS, which is being used as boiler fuels for greenhouses in rural areas, the organic carbon/elemental carbon (OC/EC) ratios in PM2.5 were very high (14.0-35.5), whereas in sawdust smoke samples they were significantly low (<4.0) due to the combustion method close to flaming combustion. ATR-FTIR analysis showed that OH(3400-3250 cm-1), CH3(2958-2840 cm-1), CH2(2910 cm-1 and 2850 cm-1), ketone(1726-1697 cm-1), C=C(1607-1606 cm-1 and 1515-1514 cm-1), lignin (1463-1462 cm-1 and 1430-1428 cm-1) and -NO2(1360-1370 cm-1) peaks were identified in all biomass burning (BB) smoke samples. However, additional peaks appeared depending on the type of biomass. Among the four types of biomass materials, an additional peak of the methylene group CH3(2872-2870 cm-1) appeared only in PFF and PKS smoke samples, and a peak of C=O(1685 cm-1) was also confirmed. And in the case of PKS smoke samples, a peak of aromatic C=C(1593 cm-1 and 1476 cm-1) that did not appear in other BB samples was also observed. This indicates that the molecular structure of organic compounds emitted during BB differs depending on the type of biomass materials. The results of this study are expected to provide valuable information to more specifically reveal the effect of BB on PM2.5 collected in the atmospheric environment.

Combustion Characteristics of a VIStA Burner Dividing Flame in a Once-Through Type Boiler (관류보일러에서 화염분할 VIStA 버너의 연소특성)

  • Ahn, Joon;Kim, Hyouck-Ju;Choi, Kyu-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.413-418
    • /
    • 2012
  • A modified VIStA (Vortex Inertial Staged Air) burner has been developed and applied to a once-through type boiler. The secondary air is supplied through a swirler instead of nozzles, which stabilizes the flame and reduces carbon monoxide (CO) emissions. However, the modification increases the emission of nitrogen oxides (NOx). To balance emissions of the two pollutants, a divided flame was adopted. An air damper was installed to control the distribution of air to each combustion chamber, and three types of flame dividers were studied. The effects of the air-fuel ratio and combustion load on the NOx formation were investigated. The divided flame was found to reduce the NOx emission up to 25%, while keeping the CO to less than 10 ppm.

Toxicity Evaluation of the Combustion Products from Synthetic Wood as Internal Finish (건축물 내부 마감재인 합성목재별 연소가스 독성평가)

  • Kim, Jong-Buk;Lee, Si-Young
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.7-18
    • /
    • 2016
  • This study evaluated the toxicity of the burning gas from the synthetic wood products used in housings or warehouses. The combustion products of five materials, viz. impregnated laminated board, MDF, Douglas fir plywood, core plywood, and Lauan retardant, were analyzed using SEM, FTIR and a Cone Calorimeter. For the Lauan retardant, 256,965 ppm of carbon dioxide ($CO_2$) and 1,475 ppm of sulfur dioxide ($SO_2$) were measured, which are 2.5 times and 3.6 times as high as their lethal concentrations of 100,000 ppm and 400 ppm, respectively. For the impregnated laminated board, 1,569 ppm of nitrogen dioxide ($NO_2$) was measured, which is 6 times as high as its lethal concentration of 250 ppm. For MDF, 795 ppm of ammonia ($NH_3$) was measured, which is higher than its lethal concentration of 750 ppm. As a result, most internal-finishes generated toxic combustion products at levels higher than their lethal concentrations, which underlines the importance of the selection and manufacturing of internal-finish materials.

A Study on Combustion Reaction Mechanism of Korean Anthracites (國産無煙炭의 燃燒反應機構에 關한 硏究)

  • Hwang Jung Euy;Son Moo Young
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.271-283
    • /
    • 1972
  • The rate Constants and energies of activation for the Combustion reaction of Korean anthracites have obtained by DTA method using the following rate equation derived by authors. $K=\frac{C_3{\cdot}W_0}{{\Delta}H{\cdot}{\Delta}C{\cdot}M{\cdot}S_A}(\frac{dy}{dt}+A(y-y_3))$ The anthracites of various ranks were treated at the different temperatures in the furnace. The probable combustion reaction mechanisms have discussed with the results obtained by the X-ray diffraction method, IR spectroscophic analysis, and gas chromatography. By the intensity of d(002) Values, it was confirmed that a parts of the amorphous carbon was converted to graphite form by heat treatment. The appreciable amounts of CO gas were expelled in the combustion process and it appeared that a little amount of the gas came from the catalytic decomposition of anthracites, The functional groups such as -OH, -SH, -NH, $-CH_2-CH_3,$ -CO, -COC-. and polycondensed aromatic rings in anthracites have observed by IR spectrophotometric analysis.

  • PDF

Development of a Hot Water Boiler System with a Rice Hull Furnace (왕겨 연소기(燃燒機)를 이용(利用)한 온수(溫水)보일러 시스템 개발(開發) (I) -실험적(實驗的) 연구(硏究)-)

  • Lee, Y.K.;Park, S.J.;Baek, P.K.;Noh, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.31-43
    • /
    • 1987
  • This study was performed to develop a hot water boiler system with small scale automatic rice hull furnace for the multi-purpose use in the farm. For the experiment a prototype hot water boiler system with rice hull furnace was fabricated, which was equipped with automatic hull feeder, igniter and ash removal device. Optimum operational conditions of the prototype: system were analyzed. The results arc summarized as follows. 1. The temperature measured right above the burning surface should be higher than $500^{\circ}C$ combustion. 2. The top zone of the combustion chamber was the most suitable location of the thermocouple to pick up the control temperature for the automatic operation of the rice hull furnace. 3. The content of carbon monoxide in the flue gas was increased with the filling height of burning material but it was less than 0.3 percent in volume in this experiment. When the filling height was expressed as the ratio of rice hull feed rate to the volume of the combustion chamber above the burning surface, the optimum ratio was about $150kg/m^3-h$. 4. The combustion efficiency of the prototype was higher than 95 percent when the feed rate was 1.1 to 2.3 kg/h and moisture content of rice hull was 22.4 percent (w.b.) or less. 5. It was estimated that the optimum operational conditions of the system were 1.3 to 2.0 kg/h in feed rate, 70 to 100 percent in excess air and 500 to $510^{\circ}C$ in control temperature. 6. The efficiency of coil heal exchanger increased with a decrease in feed rate of rice hull. When the rice hull feed rates were 1.1, 1.7 and 2.3 kg/h, the efficiencies of coil heat exchanger were about 34, 30 and 25 percent and heat transfer rates were 5.7, 7.6 and 8.8 MJ/h, respectively. When the flat plate heat exchanger was used in addition to the coil heat exchanger, the efficiency of the heat exchanger system increased to 48 percent.

  • PDF

The Effect of Mixing Rate and Multi Stage Injection on the Internal Flow Field and Combustion Characteristics of DISI Engine Using Methanol-gasoline Blended Fuel at High Speed / High Load Condition (고속 고부하 상태의 DISI 엔진에서 메탄올-가솔린 혼합연료의 연료 혼합비와 2단 분사가 엔진 내부유동 및 연소특성에 미치는 영향)

  • Bae, Jinwoo;Seo, Juhyeong;Lee, Jae Seong;Kim, Ho Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.15-24
    • /
    • 2013
  • Numerical studies were conducted to investigate the internal flow field and combustion characteristics of DISI engine with methanol blended in gasoline. Dual injection was applied and the characteristics were compared to single injection strategy. The amount of the fuel injection was corresponded to air-fuel ratio of each fuel for complete combustion. The preforming model in this study, software STAR-CD was employed for both modeling and solving. The operating speed condition were at 4000 rpm/WOT (Wide open throttle) where the engine was fully warmed. The results of single injection with M28 showed that the uniformity, equivalence ratio, in-cylinder pressure and temperature increased comparing to gasoline (M0). When dual injection was applied, there was no significant change in uniformity and equivalence ratio but the in-cylinder pressure and temperature increased. When M28 fuel and single injection was applied, the CO (Carbon monoxide) and NO (Nitrogen oxides) emission inside the combustion chamber increased approximately 36%, 9% comparing with benchmarking case in cylinder prior to TWC (Three Way Catalytic converter). When dual stage injection was applied, both CO and NO emission amount increased.

Performance Analysis of Off-Gas/Syngas Combustor for Thermal Management of High Temperature Fuel Cell System (고온형 연료전지 열관리를 위한 배기가스 연소기 성능시험)

  • Lee, Sang-Min;Lee, Youn-Hwa;Ahn, Kook-Young;Yu, Sang-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.193-200
    • /
    • 2010
  • Anode off-gas of high temperature fuel cell still contains combustible components such as hydrogen, carbon monoxide and hydrocarbon. In this study, a catalytic combustor has been applied to the high temperature fuel cell so that the combustion of anode-off gas can be boosted up. Since the performance of catalytic combustor directly depends on the combustion catalyst, this study is designed to perform the experimental investigation on the combustion characteristics of the three commercial catalysts with a different composition. Screening tests with three catalysts are preceded before the performance examination since it is necessary to determine the most suitable catalyst for design configuration of the catalytic combustor. The performance analysis shows that methane conversion rate strongly depends on gas hourly space velocity (GHSV) as well as inlet gas temperature. Additionally, the GSHV optimization results show that the optimum GHSV will be in the range between 18,000 $hr^{-1}$ and 36,000 $hr^{-1}$. It is also shown that the minimum inlet temperature of catalytic reaction of methane is from $100^{\circ}C$ to $150^{\circ}C$.

Unburnt Carbon Combustion in the Production of Light Weight Sintered Fly ash (Fly ash 경량골재 생성 중 미연탄소의 연소 현상 규명)

  • 주윤정;오명숙
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.05a
    • /
    • pp.91-96
    • /
    • 2002
  • 본 연구는 화력발전소에서 발생하는 fly ash의 재활용 분야중 하나인 fly ash 경량골재 생산과정에서 소성(sintering)온도를 결정하는 미연탄소의 연소 현상을 분석함으로서 공정에 적용 가능한 단일 입자 연소 모델 개발을 목적으로 한다. fly ash 경량골재는 미연탄소를 포함한 fly ash를 점결제를 이용하여 성형하고, 함유된 미연탄소를 연소시켜, 그 연소열을 이용하여 fly ash를 소성 시켜 형성된다.(중략)

  • PDF

Case study of cyanide detection in fatalities by fire in Korea

  • Kim, Dong-Woo;Baeck, Seung-Kyung;Kim, Sun-Chun;Seo, Joong-Seok
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.168.2-169
    • /
    • 2003
  • Hydrogen cyanide is one of the toxic agents with carbon monooxide in fire victims and is released by combustion of nitrogen-containing organic material such as plastic and wool. Until now there are few reports about blood cyanide concentrations in fatalities by fire in Korea. So in this study we examined blood cyanide concentration in 12 cases of fire fatalities. (omitted)

  • PDF

Microalgal Removal of $CO_2$from Flue Gases: Changes in Medium pH and Flue Gas Composition Do Not Appear to Affect the Photochemical Yield of Microalgal Cultures

  • Olaizola, Miguel
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.360-367
    • /
    • 2003
  • Our research objectives are to determine under what conditions microalgal-based $CO_2$capture from flue gases is economically attractive. Specifically, our objective here was to select microalgae that are temperature, pH and flue gas tolerant. Microalgae were grown under five different temperatures, three different pH and five different flue gas mixtures besides 100% $CO_2$(gas concentrations that the cells were exposed to ranged 5.7-100% $CO_2$, 0-3504ppm SO$_2$, 0-328ppm NO, and 0-126ppm NO$_2$). Our results indicate that the microalgal strains tested exhibit a substantial ability to withstand a wide range of temperature (54 strains tested), pH (20 strains tested) and flue gas composition (24 strains tested) likely to be encountered in cultures used for carbon sequestration from smoke stack gases. Our results indicate that microalgal photosynthesis is a limited but viable strategy for $CO_2$capture from flue gases produced by stationary combustion sources.