• Title/Summary/Keyword: Combustion carbon

Search Result 840, Processing Time 0.021 seconds

Combustion Gas-emission of Medium Density Fibreboard (MDF) Treated with Alkylenediaminialkyl-bis-phosphonic Acids and Bis-(dimethylaminomethyl) Phosphinic Acid (알킬렌디아미노알킬-비스-포스폰산과 비스-디메틸아미노메틸 포스핀산으로 처리된 중질섬유판의 연소가스 발생)

  • Park, Myung-Ho;Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.112-117
    • /
    • 2017
  • This study demonstrated the emission of combustion gases of medium density fibreboard (MDF)s coated with piperazinomethyl-bis-phosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), N,N-dimethylethylenediaminomethyl-bis-phosphonic acid (MDEDAP), or bis-(dimethylaminomethyl) phosphinic acid (DMDAP). Each MDFs were coated in three times with a brush with 15 wt% aqueous solution of the phosphorus-nitrogen acid additives. After the specimens were dried at room temperature, the emission of combustion gases was tested using a cone calorimeter (ISO 5660-1, 2). The peak smoke production rate ($SPR_{peak}$) of the specimens coated with phosphorus-nitrogen acids was 18.5 to 41.5%, which is lower than that of using the virgin plate. However, the production of peak carbon monoxide ($CO_{peak}$) was 6.7 to 24.2% higher than that of using the virgin plate. Also, the peak carbon dioxide ($CO_{2peak}$) was 4.2 to 24.4% lower than that of using virgin plate. While the peak oxygen depletion rate was much higher than the level of 15%, which can be fatal to humans and the resulting risk could thus be eliminated. Overall, the combustibility of coated specimens was partially suppressed, but showed a negative effect on the reduction of carbon monoxide.

Studies on Elemental Carbon and Its Origin in Black Surface Layer on Stone Pagoda in Urban Environments (도심에 위치한 석탑 표면 흑색층 내의 원소탄소성분과 그 기원연구)

  • Do, Jin-Young
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.55-65
    • /
    • 2007
  • Black surface layers collected from stone pagodas were analyzed to study the effects of carbon compounds on the blackening of stone surface layer. The total amounts of carbon was measured through elemental analyser. Organic and elemental carbon were measured by combustion ihrornatographic $CO_2$ determination after elimination of carbonates carbon with acid treatment. The elemental carbon concentration in the black surface layer measured 0.52wt.%. This value is not sufficient to explain the complete blackening of stone surface. To trace the origin of carbon in black surface layer on the stone pagoda, aerosol samples for PM 10 were collected at the near sites of the pagoda. The major components of them were soluble ions(42.8wt.%), carbon(38.4 wt.%) and crustal matter(16wt.%). From the high content(13wt.%) of elemental carbon in aerosol ran be deduced that it may be a prime origin for the elemental carbon in the black surface layer on the stone pagoda. The crustal matter in aerosol can be also a origin of silicate mineral in black surface layer and plays a important role in the darkening of black surface layer.

  • PDF

A Study on the Combustion Characteristics of Diesel Engine by the Change of the Intake Air Composition (흡기조성 변화에 따른 디젤 기관의 연소 특성 변화)

  • 김세원;임재문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.91-96
    • /
    • 1994
  • Intake gases other than air, which is composed of oxygen, nitrogen, carbon dioxide, and argon, are used to study their effects on the performance of the diesel engine experimentally. The engine is operated at constant speed and fixed fuel injection timing, and cylinder pressure and heat release rate are measured at various intake gas compositions. The results show that increase of oxygen concentration improves the performance of the engine generally. The adverse effect is observed when the oxygen concentration is increased over the critical oxygen concentration of this test, mainly because of the over-shortened ignition delay. Increase of carbon dioxide concentration degardes the performance of the engine, mainly due to the lower specific heat ratio of carbon dioxide. Adding argon gas to the intake gas improves the overall performance. Finally, it is found that two most influencing factors affecting the performance of the diesel engine in this study are ignition delay and speific heat ratio of the intake gas.

  • PDF

System Configuration Studies on Gas Turbine Combined Cycle Power Plants - Application to Processes for Carbon Capture System (가스 터빈 복합화력 발전 플랜트의 시스템 구성 제안 - CO2 포집 대안 별 비교 평가)

  • Kim, Seungjin;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.15-17
    • /
    • 2013
  • In the design of combined cycle power plants, the design parameters considered mainly could be changed and added for performance evaluation with change on the design objective and method. Therefore, the design criteria considering the different objectives and type of power plant were needed. Thermodynamic and economic analyses of various types of gas turbine combined cycle power plants with demand on generation of power and heat and carbon capture system from high pressure flue gas have been performed to establish criteria for optimization of power plants.

  • PDF

A Study on Friction and Wear Characteristics of Nano-size Carbon (나노 사이즈 탄소입자의 마찰마모 특성에 관한 연구)

  • Jung, Kwang-Woo;Choi, Jeong-Kyu;Moon, Seong-Yong;Chung, Keun-Woo
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.264-268
    • /
    • 2008
  • A large number of additives have been used with the efforts of improving the performance of lubricants used along with the development of internal combustion engine. In this study, nano-sized graphite was used as liquid-lubricant additive. In order to disperse graphite into oil, we esterified the nano-carbon manufactured by our company with various types of alcohol. After measuring the anti-wear in accordance with the types of alcohol and added concentration, it has been found that its anti-wear/friction decrease has been improved in case of adding 0.1% of the sample composed with C12/14 mixed alcohol & hexadecanol.

Paddy Soil Tillage Impacts on SOC Fractions

  • Jung, Won-Kyo;Han, Hee-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.326-329
    • /
    • 2007
  • Quantifying soil organic carbon (SOC) has long been considered to improve our understanding of soil productivity, soil carbon dynamics, and soil quality. And also SOC could contribute as a major soil management factor for prescribing fertilizers and controlling of soil erosion and runoff. Reducing tillage intensity has been recommended to sequester SOC into soil. On the other hand, determination of traditional SOC could barely identify the tillage practices effect. Physical soil fractionation has been reported to improve interpretation of soil tillage practices impact on SOC dynamics. However, most of these researches were focused onupland soils and few researches were conducted on paddy soils. Therefore, the objective of this research was to evaluate paddy soil tillage impact on SOC by physical soil fractionation. Soils were sampled in conventional-tillage (CT), partial-tillage (PT), no-tillage (NT), and shallow-tillage (ST)plots at the National Institute of Crop Science research farm. Samples were obtained at the three sampling depth with 7.5-cm increment from the surface and were sieved with 0.25- and 0.053-mm screen. Soil organic carbon was determined by wet combustion method. Significant difference of SOC contentwas found among sampling soil depth and soil particle size. SOC content tended to increase at the ST plot with increasing size of soil particle fraction. We conclude that quantifying soil organic carbon by physical soil particle fractionation could improve understanding of SOC dynamics by soil tillage practices.

Distribution of Dissolved Organic Carbon (DOC) in the Southwestern East Sea in Summer

  • Kim, Tae-Hoon;Kim, Gue-Buem
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.291-297
    • /
    • 2010
  • In the summer of 2008 (August 4-14), vertical and horizontal distributions of inorganic nutrients and dissolved organic carbon (DOC) were measured in the southwestern East Sea. Concentrations of DOC were determined for the first time in the southwestern East Sea using the high-temperature combustion oxidation (HTCO) method, and results were compared with those measured by another laboratory. Concentrations of DOC ranged from 58 to 104 ${\mu}M$ in the upper 200 m, showing a typical decreasing pattern with depth. Generally, concentrations of DOC were relatively lower, with higher nutrient concentrations, in the upper layer of the coastal upwelling zone. Concentrations of DOC ranged from 54 to 64 ${\mu}M$ in the deep Ulleung Basin (200-1500 m), and were higher than those in the Pacific and Atlantic oceans. In association with rapid vertical ventilation of the euphotic, this difference indicates a larger accumulation of semi-labile DOC in the deep East Sea than in the major oceans. A correlation between apparent oxygen utilization (AOU) and DOC in the deep ocean of the East Sea revealed that only a small portion (<10%) of the sinking DOC, relative to the sinking particulate organic carbon (POC), contributes to microbial degradation. Our results present an important data set of DOC in the East Sea, which plays a critical role in carbon cycle modeling and sequestration.

Overview on The Measurement Methods of Unburned Carbon Contents in Coal Fly-Ash (석탄 비산회(Fly-Ash)의 미연탄소 함량 측정방법에 대한 고찰)

  • Hong, EunPyo;Kim, Jung Hyeun
    • Particle and aerosol research
    • /
    • v.10 no.4
    • /
    • pp.131-136
    • /
    • 2014
  • The importance of waste treatments is increasing because of the lack of resources and environmental problems resulted from economic growth policy. Especially, the pollutant dust which is one of the wastes should be treated considerately because it could cause secondary damages on the human health as well as environmental systems. Recently, massive amount of coal fly-ash is being produced in thermoelectric power plants. In this study, we compared two general methods used in estimating the amount of unburned carbon in fly-ashes to categorize the coal fly-ashes into several groups following their carbon contents. One is the "loss on ignition(KS L 5405) method" which estimates the change of mass after combustion, and it is generally used. Another one is measuring $CO_2$ gas content by burning solid carbon in the fly-ash, and it is called "$CO_2$ analysis method."

Development of Techno-Economic Evaluation Model for CCS (Carbon Capture & Sequestration) (CCS (Carbon Capture & Sequestration) 기술·경제성 평가 분석)

  • Lee, Ji Hyun;Kwak, No-Sang;Lee, Dong Woog;Shim, Jae-Goo;Lee, Jung Hyun
    • Journal of Climate Change Research
    • /
    • v.7 no.2
    • /
    • pp.111-120
    • /
    • 2016
  • In this study, Techno-economic evaluation model for carbon capture & sequestration (CCS) technologies are reviewed. Based on a key parameters of Korea's electricity market, performance data of 10 MW-scale post-combustion $CO_2$ capture pilot plant in Boryong station, the cost of $CO_2$ avoided was evaluated followed by international guideline suggested by IEA CCS costing methods task force. The result showed that Korea's Electricity cost including CAPEX & OPEX of reference power plant is relatively low compared to OECD nations which lead to a lower CCS cost ($33USD\;t/CO_2$). And future work using newly evaluated CAPEX & OPEX data of power plant with/without CCS is recommended.

A Study on the Safety Improvement of Carbon Black Manufacturing Process (카본블랙 제조공정의 안전성 향상에 관한 연구)

  • Joo, Jong-Yul;Jeong Phil-Hoon;Sung-Eun, Lee
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.4
    • /
    • pp.153-161
    • /
    • 2023
  • Carbon black is a material in the form of fine black powder obtained by incomplete combustion or pyrolysis of hydrocarbons, and is composed of 90-99% carbon, and the rest is composed of hydrogen and oxygen. In the event of an emergency during the manufacture of carbon black, the generated tail gas should be safely discharged through an emergency line to prevent fire, explosion, and environmental pollution accidents caused by the tail gas. If the pressure continues to rise, the pressure control valve shall operate and the rupture plate shall be ruptured sequentially and the tail gas shall be discharged to the vent stack through the emergency line. As an emergency emission system, even if some untreated substances in the tail gas are released into the atmosphere, they are lighter than air, so it is safe to discharge them to a safe place through the Vent Stack. If the gas pressure is rising or worse, it is discharged from the Vent Stackine, and discharging fuel.