• Title/Summary/Keyword: Combustion carbon

Search Result 840, Processing Time 0.024 seconds

Durability Characteristics of an IDI Diesel Engine Using Biodiesel Fuel (바이오디젤유를 사용하는 간접분사식 디젤기관의 내구 특성)

  • Ryu, Kyun-Hyun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.120-127
    • /
    • 2005
  • An IDI diesel engine used to agricultural tractors was fueled with $20\%$ biodiesel fuel(BDF 20) in excess of 300 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis. The combustion variation such as the combustion maximum pressure and the crank angle at this maximum pressure was not appeared during long-time dynamometer testing. Also, BSFC with BDF 20 resulted in lower than with diesel fuel. Since the biodiesel fuel used in this study includes oxygen of about $11\%$, it could influence the combustion process strongly. So, BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions without special increase of oxides of nitrogen than diesel fuel. It was concluded that there was no unusual deterioration of the engine, or any unusual change in exhaust emissions from using the BDF 20.

Laminar Burning Velocities and Flame Stability Analysis of Hydrocarbon/Hydrogen/Carbon Monoxide-air Premixed Flames (탄화수소/수소/일산화탄소-공기의 예혼합화염에서 층류화염전파속도와 화염안정성)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Lee, Kee-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.23-32
    • /
    • 2011
  • To investigate cell formation in hydrocarbon/hydrogen/carbon monoxide-air premixed flames, the outward propagation and cellular instabilities were experimentally studied in a constant pressure combustion chamber at room temperature and elevated pressures. Unstretched laminar burning velocities and Markstein lengths of the mixtures were obtained by analyzing high-speed schlieren images. In this study, hydrodynamic and diffusional- thermal instabilities were evaluated to examine their effects on flame instabilities. The experimentally-measured unstretched laminar burning velocities were compared to numerical predictions using the PREMIX code. Effective Lewis numbers of premixed flames with methane addition decreased for all of the cases; meanwhile, effective Lewis numbers with propane addition increased for lean and stoichiometric conditions and increased for rich and stoichiometric cases for hydrogen-enriched flames. With the addition of propane, the propensity for cell formation significantly was diminished, whereas cellular instabilities for hydrogen-enriched flames were promoted. However, similar behavior of cellularity was obtained with the addition of methane to the reactant mixtures.

Study on Materials and Process Systems for $CO_2$ separation from Combustion of Fossil Fuels (배기가스에서 이산화탄소 분리를 위한 재료 및 공정에 대한 이론적 고찰)

  • Han, Sang-Il;Hwang, Kyu-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.375-386
    • /
    • 2014
  • Carbon dioxide ($CO_2$) is a green-house gas which causes the global warming problems. Anthropogenic emissionspredominantly from the combustion of coal, oil, and natural gas in electricity generations are expected to increase continuously in the future, resulting in increased $CO_2$ concentration in the atmosphere. In this study, we investigated materials properties and process systems for $CO_2$ separation with an emphasis of the post-combustion process.

Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model

  • Kim, Yeon Soo;Jeon, Joongoo;Song, Chang Hyun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2836-2846
    • /
    • 2020
  • During severe nuclear power plant (NPP) accidents, a H2/CO mixture can be generated in the reactor pressure vessel by core degradation and in the containment as well by molten corium-concrete interaction. In spite of its importance, a state-of-the-art methodology predicting H2/CO combustion risk relies predominantly on empirical correlations. It is therefore necessary to develop a proper methodology for flammability evaluation of H2/CO mixtures at ex-vessel phases characterized by three factors: CO concentration, high temperature, and diluents. The developed methodology adopted Le Chatelier's law and a calculated non-adiabatic flame temperature model. The methodology allows the consideration of the individual effect of the heat transfer characteristics of hydrogen and carbon monoxide on low flammability limit prediction. The accuracy of the developed model was verified using experimental data relevant to ex-vessel phase conditions. With the developed model, the prediction accuracy was improved substantially such that the maximum relative prediction error was approximately 25% while the existing methodology showed a 76% error. The developed methodology is expected to be applicable for flammability evaluation in chemical as well as NPP industries.

Study on Combustion Characteristics of the Opposed Flames for Different Mixing Rates of Carbon Dioxide and Water Vapor (이산화탄소 및 수중기의 혼합율에 따른 대향류 화염의 연소특성 연구)

  • Park, Won-Hee;Jo, Bum-Jin;Kim, Tae-Kuk
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.49-54
    • /
    • 2004
  • Detailed flame structures of the opposed flames formed for different oxidant compositions are studied numerically. The detailed chemical reactions are modeled by using the CHEMKIN code. Only the $CO_2$ and $H_2O$ are assumed to participate by absorbing the radiative energy while all other gases are assumed to be transparent. The discrete ordinates method and the narrow band based WSGGM with a gray gas regrouping technique are applied for modeling the radiative transfer through non-homogeneous and non-isothermal combustion gas mixtures generated by the opposed flow flames. The results show that the different radiation model can cause different results for flame structures and the WSGGM with gray gas regrouping is successful in modeling the opposed flames with non-gray gas mixture. The numerical results show that the increases in $CO_2$ and $H_2O$ compositions cause to reduce the flame temperature and the NO formation.

  • PDF

Effects of solid fuel combustion characteristics in various combustor types (다양한 종류의 연소로 형식에서 고체 연료 특성이 연소과정에 미치는 영향)

  • Choi, Jin-Hwan;Yang, Won;Lee, Sang-Deuk;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.142-152
    • /
    • 2001
  • Three Lab-scale combustors of different types were made to observe some basic phenomena of fuel combustion in the combustors ; grate type combustor, rotary kiln and FBC. The aims were to introduce how to simulate the combustion behaviors in the real plants by utilizing the reduced apparatuses and characterize the combustors relating to some important parameters such as fuel size, water contents, bed temperature, rotating speed of kiln, flow rate. The mean carbon conversion time and the flame propagation rate were adopted for the quantitative analysis.

  • PDF

The Effect of Operating Conditions on the Heat-flow Characteristics and Reforming Efficiency of Steam Reformer with Combustor (연소기가 장착된 수증기 개질기에서 운전조건이 열유동 특성 및 개질효율에 미치는 영향)

  • Kim, Ji-Seok;Lee, Jae-Seong;Kim, Ho-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.36-45
    • /
    • 2011
  • The heat-flow characteristics and reforming efficiency of steam reformer with combustor are numerically investigated at various operating conditions. SCR(Steam to Carbon Ratio) and GHSV(Gas Hourly Space Velocity) are adopted as important operating conditions. User-Defined-Function(UDF) was used to simultaneously calculate reforming and combustion reaction. Numerical results show that hot burned gas rise by a buoyant force and heat exchange between reforming reactors and cocurrent flow occurs in the combustion region. The results also indicate that an increase of SCR leads to decrease the mole fraction of hydrogen at the reactor outlet. As GHSV increases, conversion rate decreases.

Investigation of Solid Fuel Combustion Characteristics in Various Types of Combustors (다양한 종류의 연소로 내 고체 연료의 연소 특성 고찰)

  • Choi, Jin-Hwan;Yang, Won;Lee, Sang-Deuk;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.3
    • /
    • pp.1-9
    • /
    • 2004
  • This study is aimed to characterize the combustion behavior of solid fuel in the various types of the combustors: stoker, rotary kiln and fluidized bed type combustors. Three different types of reduced-scale combustors are introduced, and temperatures and flue gas compositions are measured for various fuel sizes, water contents, initial temperature, and air flow rates. In case of the rotary kiln combustor, effects of rotating speed of the combustor are also investigated. Mean carbon conversion time (MCCT) and flame propagation rate (FPR) are used for the quantitative analysis. It is revealed that the reaction rates of the fuel are significantly influenced by the fuel characteristics, type of the combustors and air flow rate. Major design parameters for each type of the combustors are summarized through the reduced-scaled model analysis.

  • PDF

Combustion Technology for Low Rank Coal and Coal-Biomass Co-firing Power Plant (저급탄 석탄화력 및 석탄-바이오매스 혼소 발전을 위한 연소 기술)

  • Lee, Donghun;Ko, Daeho;Lee, Sunkeun;Baeg, Guyeol
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.129-132
    • /
    • 2013
  • The low rank coal combustion and biomass-coal co-firing characteristics were reviewed on this study for the power plant construction. The importance of using low rank coal(LRC) for power plant is increasing gradually due to power generation economy and biomass co-firing is also concentrated as power source because it has carbon neutral characteristics to reduce green-house effect. The combustion characteristics of low rank coal and biomass for a 310MW coal firing power plant and a 100MW biomass and coal co-firing power plant were studied to apply into actual power plant design and optimized the furnace and burner design.

  • PDF

Combustion Characteristics of an Agricultural Diesel Engine using Biodiesel Fuel

  • Ryu, Kyunghyun;Oh, Youngtaig
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.709-717
    • /
    • 2004
  • Biodiesel has great potential as an alternative fuel for diesel engines that would reduce air pollution. It is a domestically produced, renewable fuel that can be manufactured from fresh or used vegetable oils, or from animal fats. In this study, a biodiesel fuel derived from rice bran oil was tested as an alternative fuel for agricultural diesel engines. The emissions were characterized for both neat and blended biodiesel fuels, and for conventional diesel fuel. Since this biodiesel fuel contained 11 % oxygen, it strongly influenced the combustion process. The use of biodiesel fuel resulted in lower carbon monoxide, carbon dioxide, and smoke emissions, without any increase in nitrous oxide emissions. The study demonstrated that biodiesel fuel could be effectively used as a renewable and environmentally innocuous fuel for agricultural diesel engines.