• Title/Summary/Keyword: Combustion Synthesis

Search Result 273, Processing Time 0.027 seconds

Synthesis and Characterization of $Cr_3C_2$ for Plasma-arc Deposit by Combustion Synthesis Process (연소합성법에 의한 Plasma-arc Deposit 용 $Cr_3C_2$ 합성 및 특성에 관한 연구)

  • 장윤식;윤정아;이윤복;박성수;김인술;박흥채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1285-1291
    • /
    • 1996
  • Using Cr2O3 Al and graphite powders as starting materials Cr3C2 was synthesized by combustion synthesis process according to the following reaction : 3Cr3C2 +4C+6Allongrightarrow2Cr3C2 +3Al2O3. The synthesis was conducted at 2 atm in an argon atmosphere. in this study main-product was monolithic phase of Cr3C2 /Cr7C3 mixture and sub-product was slag state of $\alpha$-Al2O3. Single phase of Cr3C2 was obtained when crushed main-product was heat-treated at 120$0^{\circ}C$ for 3h in vacuum state with addition of 2.5wt% C. The obtained Cr3C2 powder can be used as plasma-arc deposit material because the flowability index of powder with the size of 9-50${\mu}{\textrm}{m}$ was 66.

  • PDF

Role of Different Oxide to Fuel Ratios in Solution Combustion Synthesis of SnO2 Nanoparticles

  • Chavan, Archana U.;Kim, Ji-Hye;Im, Ha-Ni;Song, Sun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.122-127
    • /
    • 2016
  • Tin oxide ($SnO_2$) nanoparticles have been synthesized by solution combustion method using citric acid as a fuel. The oxide to fuel ratio has been varied to obtain ultrafine nanoparticles with better surface area; such particles will be useful in many applications. With this synthesis method, spherical particles are formed having a particle size in the range of 11-30 nm and BET surface area of ~ $24m^2/g$. The degree of agglomeration of $SnO_2$ nanoparticles has been calculated.

Combustion synthesis of carbon nanotubes using their self-catalytic behavior (자기촉매 특성을 이용한 탄소나노튜브의 연소합성 연구)

  • Woo, Sang-Kil;Hong, Young-Taek;Kwon, Oh-Chae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1815-1820
    • /
    • 2008
  • Self-catalytic behavior of combustion-synthesized carbon nanotubes (CNTs) is evaluated using a double-faced wall stagnation flow burner with a CNT-deposited stainless steel plate wall. CNT formation is observed using field-emission scanning and transmission electron microscopies and Raman spectroscopy. A self-catalytic behavior of multi-walled CNTs (MWCNTs) shows the enhanced ratio of channel diameter to tube wall thickness and the enhanced intensity ratio of G-band to D-band in Raman spectroscopy, implying that the quality of metal-catalytic, flame-synthesized MWCNTs can be much improved via a CNT self-catalytic flame-synthesis process. Thus, using a DWSF burner through the self-catalytic process has potential in mass production of CNTs having much improved quality.

  • PDF

SHS of Oxide Systems Based on MCR of Quartz Modified by Organometallic Compounds

  • Soh, Dea-Wha;Tlek, Ketegenov;Z.A., Mansurov
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.666-669
    • /
    • 2002
  • The differences of the effects of mechanical substance pre-activation in the mills with divers force effect schemes on the self-propagating high temperature synthesis (SHS) of the $SiO_2$ + 37.5% Al system were investigated. The power saturation of activated material state are estimated referring on the variations of dilatometry curve paths. The effects of activation time on the temperature of sample self-ignited in the furnace, combustion temperature and completeness of the quartz reaction with aluminium were determined. The enhancing effects of organic modifiers of quartz particle surfaces on the further SHS synthesis development were shown.

  • PDF

Synthesis of $Bi_{2+x}Sr_2Ca_{n-1}Cu_{n}O_{4+2n+d}$ compounds by SHS

  • Soh, Deawha;Cho,Yongioon;Korobova, N.;Isaikina, O.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.94-97
    • /
    • 2002
  • BSCCO (2223) compound which has the highest temperature of transition to the superconducting state in the homologous series considered is synthesized by SHS. The method exploits self-sustaining solid-flame combustion reactions which develop very high internal material temperatures over short periods. This report introduces the SHS method and its advantages and discusses its application in the synthesis of superconducting materials.

  • PDF

Mechanism on the Synthesis of Titanium Carbide by SHS (Self-Propagating High-Temperature Synthesis) Method (자체반응열 고온합성법에 의한 탄화티타늄 합성에 관한 메카니즘)

  • Ha, Ho;Hwang, Gyu-Min;Han, Hee-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1249-1258
    • /
    • 1994
  • Titanium carbide was synthesized by reacting the prepared titanium powder and carbon black using SHS method sustains the reaction spontaneously, utilizing heat generated by the exothermic reaction itself. In this process, the effect of the particle size of titanium powder on combustion temperature and combustion wave velocity was investigated. By controlling combustion temperature and combustion wave velocity via mixing Ti and C powder with TiC, the reaction kinetics of TiC formation by SHS method was considered. Without reference to the change of combustion temperature and combustion wave velocity, TiC was easily synthesized by combustion reaction. As the particle size of titanium powder was bigger, or, as the amount of added diluent(TiC) increased, combustion temperature and combustion wave velocity were found to be decreased. The formation of TiC by combustion reaction in the Ti-C system seems to occur via two different mechanisms. At the beginning of the reaction, when the combustion temperatures were higher than 2551 K, the reaction was considered to be controlled by the rate of dissolution of carbon into a titanium melt with an apparent activation energy of 148 kJ/mol. For combustion temperatures less than 2551 K, it was considered to be controlled by the atomic diffusion rate of carbon through a TiC layer with an apparent activation energy of 355 kJ/mol. The average particle size of the synthesized titanium carbide was smaller than that of the starting material(Ti).

  • PDF

Effect of MgO Diluents in Combustion Synthesis of TiB2 Nano Particles (TiB2 나노 입자의 연소합성 시 MgO 희석제가 미치는 영향)

  • Lee, Byung-Ki;Lee, Jong-Moo;Park, Je-Hyeong;Kang, Eul-Son;Baek, Seung-Soo;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.607-612
    • /
    • 2005
  • The effect of MgO diluents in combustion synthesis of $TiB_2$ nano particles was investigated. The reaction $TiO_2\;+\;B_2O_3\;+\;xMg\;{\rightarrow}\;TiB_2\;+\;5MgO$ was used to synthesize $TiB_2$ nano particles. The combustion velocity was measured to examine the relation between the reaction temperature and the morphologies of particles. The diluent MgO did not react with the reactants and played a role to decrease combustion temperature. As the MgO diluents contents increased, the particles with the smaller size and the narrower size distribution were synthesized. At the condition of 6 mole of MgO, the combustion wave velocity was about 5 cm/see and the synthesized particles showed the size of 60 nm with narrow size distribution.

Size Tailored Nanoparticles of ZrN Prepared by Single-Step Exothermic Chemical Route

  • Lee, Sang-Ki;Park, Kyung-Tae;Ryu, Hong-Youl;Nersisyan, Hayk H.;Lee, Kap-Ho;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.243-248
    • /
    • 2012
  • ZrN nanoparticles were prepared by an exothermic reduction of $ZrCl_4$ with $NaN_3$ in the presence of NaCl flux in a nitrogen atmosphere. Using a solid-state combustion approach, we have demonstrated that the zirconium nitride nanoparticles synthesis process can be completed in only several minutes compared with a few hours for previous synthesis approaches. The chemistry of the combustion process is not complex and is based on a metathesis reaction between $ZrCl_4$ and $NaN_3$. Because of the low melting and boiling points of the raw materials it was possible to synthesize the ZrN phase at low combustion temperatures. It was shown that the combustion temperature and the size of the particles can be readily controlled by tuning the concentration of the NaCl flux. The results show that an increase in the NaCl concentration (from 2 to 13 M) results in a temperature decrease from 1280 to $750^{\circ}C$. ZrN nanoparticles have a high surface area (50-70 $m^2/g$), narrow pore size distribution, and nano-particle size between 10 and 30 nm. The activation energy, which can be extracted from the experimental combustion temperature data, is: E = 20 kcal/mol. The method reported here is self-sustaining, rapid, and can be scaled up for a large scale production of a transition metal nitride nanoparticle system (TiN, TaN, HfN, etc.) with suitable halide salts and alkali metal azide.

Peculiarities of SHS and Solid State Synthesis of ReBa2Cu3O7-x Materials

  • Soh, Deawha;Natalya, Korobova
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.275-280
    • /
    • 2002
  • The peculiarities of using Self-propagating High-temperature Synthesis (SHS) and solid-stave chase synthesis for production of high temperature superconductor materials were discussed. Oxide superconductors with general formula of $ReBa_2Cu_3O_{7-x}$ (Re=Y, Sm) haute been made by using barium oxide initial powder instead of traditional barium carbonate. Phenomena observed during the grinding of the reactants mixture are presented. Mechano-chemical activation - as a pre-treatment of the reactants mixture - strongly influences the kinetic parameters, the reaction mechanism, and the composition and structure of the final product.