• Title/Summary/Keyword: Combustion Stabilization Devices

Search Result 11, Processing Time 0.034 seconds

Application of Combustion Stabilization Devices to Liquid Rocket Engine (액체 로켓엔진에서 연소 안정화기구의 적용에 관한 연구)

  • Sohn Chae-Hoon;Moon Yoon-Wan;Ryu Chul-Sung;Kim Young-Mog
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.259-262
    • /
    • 2002
  • Application of combustion stabilization devices such as baffle and acoustic cavity to liquid propellant rocket engine is investigated to suppress high-frequency combustion instability, i.e., acoustic instability. First, these damping devices are designed based on linear damping theory. As a principal design parameter, damping factor is considered and calculated numerically in the chambers with various specifications of these devices. Next, the unbaffled chambers with/without acoustic cavities are tested experimentally for several operating conditions. The unbaffled chamber shows the specific stability characteristics depending on the operating condition and has small dynamic stability margin. The most hazardous frequency is clearly identified through Fast Fourier Transform. As a result, the acoustic cavity with the present design has little stabilization effect in this specific chamber. Finally, stability rating tests are conducted with the baffled chamber, where evident combustion stabilization is observed, which indicates sufficient damping effect. Thrust loss caused by baffle installation is about $2{\%}$.

  • PDF

Application of Combustion Stabilization Devices to Liquid Rocket Engine (액체 로켓엔진에서 연소 안정화기구의 적용 효과)

  • Sohn, Chae-Hoon;Seol, Woo-Seok;Lee, Soo-Yong;Kim, Young-Mog;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.79-87
    • /
    • 2003
  • Application of combustion stabilization devices such as baffle and acoustic cavity to liquid propellant rocket engine is investigated to suppress high-frequency combustion instability, i.e., acoustic instability. First, these damping devices are designed based on linear damping theory. As a principal design parameter, damping factor is considered and calculated numerically in the chambers with/without these devices. Next, the unbaffled chambers with/without acoustic cavities are tested experimentally for several operating conditions. The unbaffled chamber shows the peculiar stability characteristics depending on the operating condition and it is found to have small dynamic stability margin. As a result, the acoustic cavity with the present design has little stabilization effect in this specific chamber. Finally, stability rating tests are conducted with the baffled chamber, where evident combustion stabilization is observed, which indicates sufficient damping effect.

A Study on the Turbulent Flow Characteristics of Swirl Jets for Improvement of Combustion Efficiency (연소효율 개선을 위한 스월제트의 난류유동 특성에 관한 연구)

  • Ko, Dong Guk;Yoon, Suck Ju
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.75-81
    • /
    • 2014
  • Swirl flow in the gun type burner has a decisive effect on the stabilization of the flame, improvement of the combustion efficiency, and also a reduction of NOx. This swirl flow is created by the spinner which is inside the airtube that guide the combustion air. Gun type burner has generally the inner devices composed nozzle adapter, spark gap ignitor, and spinner. These inner components change the air flow behavior passing through air tube. Meanwhile, turbulent characteristics of this air flow are important to understand the combustion phenomena in the gun type burner, because the mixture of fuel and air are depended on. However, nearly all of the studies have been analyzed the turbulent flow of simplified combustion formation without the inner devices. So, this study conducted the measurement using by hot-wire anemometer and analyzed turbulent flow characteristics of the swirl flow discharged from the air tube with inner devices. Turbulence characteristics come up in this study were turbulence intensity, kinetic energy and shear stress of the air flow with the change of the distance of axial direction from the exit of the air tube.

Effect of the Swirl Number of Spinner on the Exhaust Air of the Gun Type Burner (건타입 버너의 토출공기에 대한 선회기의 스월 수 영향)

  • Ko, Dong Guk;Yoon, Suck Ju
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.70-75
    • /
    • 2015
  • Swirl flow in the gun type burner has an impact on the stabilization of the flame, improvement of the combustion efficiency. The swirl flow is created by the spinner which is inside the airtube that guide the combustion air. Gun type burner has generally the inner devices composed electronic spark plug, injection nozzle, combustion device adaptor, and spinner. These inner components change the air flow behavior passing through airtube. So, this study conducted the measurement using by hot-wire anemometer and analyzed effect of the swirl number of spinner on the exhaust air of gun type burner. Turbulence characteristics come up in this study was mean velocity, turbulence intensity, kinetic energy, shear stress and flattness factor of the air flow with the change of the distance of axial direction and tangential direction from the exit of the airtube.

연소 안정성 평가 시험을 통한 배플 길이의 안정성 여분 평가

  • Kim, Hong-Jip;Lee, Kwang-Jin;Seo, Seong-Hyeon;Kim, Seung-Han;Han, Yeoung-Min;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.188-196
    • /
    • 2004
  • To optimize and limit the axial length of baffle in KSR-III engine, stability rating tests using pulse gun as one of artificial disturbance devices have been done. Decay time and other parameters for the evaluation of stabilization ability of engine to external perturbation have been analyzed to quantify stabilization capacity of engine, in other words, dynamic stability margin. If baffle does not cover flame zone enough which can be considered as collision region of injector, it wasn't be able to suppress external perturbation sufficiently. The limit of combustion stability margin of engine is assumed to be 50 mm length baffle.

  • PDF

Stability Rating Tests for Optimization of Axial Baffle Length (배플 길이의 최적화를 위한 연소 안정성 평가 시험)

  • Kim, Hong-Jip;Lee, Kwang-Jin;Seo, Seong-Hyeon;Kim, Seung-Han;Han, Yeoung-Min;Seol, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.69-77
    • /
    • 2005
  • To optimize and limit the axial length of the baffle of the KSR-III engine, stability rating tests using pulse gun as one of artificial disturbance devices have been done. Generally a rocket engine can be considered to be dynamically stable if a certain imposed external perturbation or pressure oscillation in rocket combustion chamber could be suppressed within a short time period. Decay time and other parameters for the evaluation of stabilization ability of an engine to external perturbation have been analyzed to quantify stabilization capacity of engine, in other words, dynamic stability margin. Baffle not covering flame zone enough which can be considered as collision region of injector wasn't be able to suppress external perturbation sufficiently. The limit of combustion stability margin of engine is assumed to be 50 mm length baffle of the KSR-III engine.

Numerical Analysis of Acoustic Characteristics in Gas Turbine Combustor with Spatial Non-homogeneity

  • Sohn, Chae-Hoon;Cho, Han-Chang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1461-1469
    • /
    • 2004
  • Acoustic characteristics in an industrial gas-turbine combustor are numerically investigated by a linear acoustic analysis. Spatially non-homogeneous temperature field in the combustor is considered in the numerical calculation and the characteristics are analyzed in view of acoustic instability. Acoustic analyses are conducted in the combustors without and with acoustic resonator, which is one of the acoustic-damping devices or combustion stabilization devices. It has been reported that severe pressure fluctuation frequently occurs in the adopted combustor, and the measured signal of pressure oscillation is compared with the acoustic-pressure response from the numerical calculation. The numerical results are in good agreement with the measurement data. In this regard. the phenomenon of pressure fluctuation in the combustor could be caused by acoustic instability. From the numerical results for the combustor with present acoustic resonators installed, the acoustic effects of the resonators are analyzed in the viewpoints of both the frequency tuning and the damping capacity. It is found that the resonators with present specifications are not optimized and thus, the improved specification or design is required.

The Effect of Swirl on the Blowout Velocities of Partially Premixed Interacting Flames (스월이 부분예혼합 상호작용화염의 화염날림 유속에 미치는 영향)

  • Lee, Byeong-Jun;Choi, Kwang-Deok
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.26-31
    • /
    • 2009
  • Adding small amounts of air to the fuel is used in many commercial combustors to avoid sooty flame. But partially premixed jet flame has lower blowout velocity, $u_{b.o}$, than nonpremixed one. Increasing blowout limit would be one of the key factors to develope highly intense compact combustion devices. Swirling flow enhances fuel and air mixing and induces a highly turbulent recirculation zone, which helps flame stabilization. It was known that NOx emission decreases with swirl on the proper range of swirl number. And it was shown that the flame interaction in multiple jets also increases $u_{b.o}$ owing to the internal recirculation and reduces NO emission. If the effects of swirl and flame interaction are combined together in partially premixed flame, both $u_{b.o}$ increasement and NOx emission reduction could be achieved. Blowout limits of partially premixed interacting propane flame in the swirling air coflow are investigated experimentally. The results show that the flame is not extinguished up to the experimental limits, 210 m/s, at the swirl number of 0.32 and $X_{F,o}$ = 0.46.

  • PDF

Development of Analysis Code for Evaluation of Acoustic Stability of Rocket Engine Combustor with Various Designs (로켓엔진 연소기 설계의 음향안정성 평가를 위한 해석코드 개발)

  • Kim, Seong-Ku;Kim, Hong-Jip;Sohn, Chae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.110-116
    • /
    • 2004
  • In this study, a three-dimensional finite-element analysis code has been developed to predict acoustic behaviors in rocket combustion chambers and to quantitatively evaluate acoustic stability margins for various designs with passive stabilization devices such as baffle and acoustic resonators. As a validation case, computations are made for combustion chambers with/without a hub-and-six-blade baffle which are developed in the KSR-III Development Program. Compared with experimental results from ambient acoustic test, the numerical approach reasonably well predicts acoustic pressure responses to acoustic oscillation excitation for both unbaffled and baffled combustion chambers and yields quantitatively good agreement for acoustic damping effects of baffle installation in terms of damping factor ratio and resonant frequency shift.

A Numerical Analysis of Acoustic Characteristics in Gas Turbine Combustor with Spatial Non-homogeneity (불균질한 온도장을 고려한 가스터빈 연소기의 음향장 해석)

  • Sohn, Chae-Hoon;Cho, Han-Chang
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1292-1297
    • /
    • 2004
  • Acoustic characteristics in an industrial gas-turbine combustor are numerically investigated by adopting linear acoustic analysis. Spatially non-homogeneous temperature field in the combustor is considered in the numerical calculation and the characteristics are analyzed in view of acoustic instability. Acoustic analysis are conducted in the combustors without and with acoustic resonator, which is one of combustion stabilization devices. It has been reported that severe pressure fluctuation frequently occurs in the adopted combustor, and the measured signal of pressure oscillation is compared with the acoustic-pressure response from the numerical calculation. The numerical results are in a good agreement with the measurement data. In this regard, the phenomenon of pressure fluctuation in the combustor could be caused by acoustic instability. The acoustic effects of the resonators are analyzed in the viewpoints of both the frequency tuning and the damping capacity.

  • PDF