• Title/Summary/Keyword: Combustion Simulation

Search Result 757, Processing Time 0.028 seconds

A Study on Combustion Characteristics of Methane-air Homogeneous Mixture in a Constant Volume combustion Chamber by FIRE Code (FIRE Code를 사용한 정적연소기의 메탄-공기 균질 혼합기 연소특성 연구)

  • Lee, Suk-Young;Huh, Kang-Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.2
    • /
    • pp.28-36
    • /
    • 2006
  • A constant volume combustion chamber was used to investigate the combustion characteristics. of homogeneous charge of methane-air mixture under various initial pressure, equivalence ratio and ignition times. The constant volume combustion chamber(CVCC) mostly has been studied by the experiments of visualization until now. So it is needed the numerical analysis of fluid and combustion characteristics in chamber by the more detail simulation. In this paper, the numerical analysis is tried to approach basically the homogeneous charge combustion phenomena under the various conditions, and the combustion phenomena in chamber is numerically analyzed by the commercial FIRE code. As a results, the combustion phenomena which were mean temperature, OH radical and reaction rate in chamber were investigated and it showed that the smallest flame growth occurs for the lean state and the increase of initial charged pressure condition due to the reduced OH radical.

  • PDF

A Study on NOx Pollutant Reduction and Combustion Characteristics of Impinging-Jet-Flame combustion Process(III) (대향분출염 화염방식에 의한 NOx 생성저감과 연소특성 연구 (III))

  • 최성만;정인석;조경국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.11-22
    • /
    • 1996
  • It has been generally accepted that NOx formation increases as the maximum temperature or correspondingly the maximum pressure of a combustion system increases. Recently some exceptional experimental results have been reportes that under certain circumstance NOx formation could be reduced while the maximum pressure was increasing by varying the methods of combustion for the same kind of premixed gases. Until now that kind of results have been acquired only for the case of a dual opposed prechamber. But the mechanism has not been clearly understood yet. 3D computer simulation has been tried to clarify the mechanism. Flor this purpose KIVA-Ⅱ has been modified and applied to the model combustion chamber with which the same kind of experimental works have been done by the authors. A good agreement with the experimental results was achieved with the spatial and temporal resolution which is hard th be obtained by the experimental methods. And it was observed that for the dual opposed prechamber case the time for the NOx formation, which is non-equilibrium reaction, is shorter than any other case by an appropriate mixing process in the main combustion chamber. The shorter time reduceed heat loss through the combustion chamber walls and thereby obtaines the higher maximum pressure.

  • PDF

Flame simulation on the two stage heavy oil combustion (이단중유연소 버너의 수치해석적 연구)

  • Lee, Sung-Soo;Kim, Hyuck-Ju;Park, Byoung-Sik;Kim, Jong-Jin;Choi, Gyu-Sung
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.209-214
    • /
    • 2002
  • Computations were performed to investigate the flow, temperature and pollutants in two stage heavy-oil combustion burner. The burner geometry and flow conditions were provided by a burner company. The goal of the study is to understand combustion phenomena according to each air inlet's velocity, excessive air ratio and air temperature through CFD. Air flow rates at two inlets are adjusted by a damper inside a burner. Here, injection conditions of liquid fuel are kept constant throughout all simulations. This assumption is made in order to limit the complexity of oil combustion though it may cause some disagreement. The final goal of this research is to design a Low-NOx heavy oil combustion burner through comparison between computational study and experimental ones. Besides experiments, simulation works can give us insights into heavy oil combustion and help us design a Low NOx burner while saving time and cost. The computational study is based on k-e model, P-1 radiation model(WSGGM) and PDF, and is implemented on a commercial code, FLUENT.

  • PDF

A Study on Diesel Spray Combustion Modeling by Eulerian and Lagrangian Conditional Moment Closure Models (Eulerian 및 Lagrangian CMC 모델을 사용한 디젤분무연소 모델링에 관한 연구)

  • Kim, Woo Tae;Cho, Hyun Su;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.195-198
    • /
    • 2012
  • Numerical simulation is performed to evaluate the conditional moment closure (CMC) models for spray development, ignition, and turbulent combustion for the Engine Combustion Network (ECN) test cases. The CMC model is implemented in the open source code, OpenFOAM, to provide conditional flame structures through the solution of Eulerian as well as Lagrangian conditional transport equations. In spite of more accurate treatment of the convective term, Eulerian CMC provides similar ignition delays and lift-off lengths with Lagrangian CMC.

  • PDF

Bed Combustion in a Furnace Enclosure - a Model for the MSW Incinerator

  • Ryu, Chang-Kook;Shin, Dong-Hoon;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 2002
  • The bed combustion in an incinerator interacts with the gas flow region through heat and mass transfer. Combined bed combustion and gas flow simulations are performed to investigate this coupled interaction for various operating conditions and furnace configurations. Radiation onto the bed from the furnace is interrelated with the combustion characteristics in the bed, and is also affected by the flow pattern in the gas flow region. Since the contribution of gaseous emission to the total radiation is significant, an adequate flow pattern in a well-designed furnace shape would lead to an increased heat influx on the bed, especially in the early stage of the waste combustion. Advancing the initiation point of the waste combustion can also reduce the size of the lower gas temperature region above the bed, which can be achieved by controlling operating conditions such as the waste feeding rate, the bed height and the primary air flow distribution.

  • PDF

Combustion Characteristics of Flameless Combustion by Reactants Injection Conditions (반응물 분사조건에 따른 무화염 연소특성 연구)

  • Hong, Seong Weon;Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.8-16
    • /
    • 2013
  • The flameless combustion has been considered as one of the promising combustion technology for high thermal efficiency, reducing NOx and CO emissions. In this paper, the effect of air and fuel injection condition on formation of flameless combustion was analyzed using three dimensional numerical simulation. The results show that the high temperature region and the average temperature was decreased due to increase of recirculation ratio when air velocity is increased. The average temperature was also affected by entrainment length. Generally mixing effect was enhanced at low entrainment length and dilution was dominated at high entrainment length. This entrainment length was greatly affected by air and fuel injection velocity and distance between air and fuel. It is also found that the recirculation ratio and dilution effect were generally increased by entrainment length and the recirculation ratio, mixing and dilution effect are the significant factor for design of flameless combustion system.

Mechanisms of Oblique Shock-Induced Combustion Instability

  • Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • Instability of oblique detonation waves (ODW) at off-attaching condition was investigated through a series of numerical simulations. Two-dimensional wedge of finite length was considered in $H_2/O_2/N_2$ mixtures at superdetonative condition. Numerical simulation was carried out with a compressible fluid dynamics code and a detailed hydrogen-oxygen combustion mechanism. Present result reveals that there is a chemical kinetic limit of the ODW detachment, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. Result also presents that ODW still attaches at a wedge as an oblique shock-induced flame showing periodically unstable motion, if the Rankine-Hugoniot limit of detachment is satisfied but the chemical kinetic limit is not. Mechanism of the periodic instability is considered as interactions of shock and reaction waves coupled with chemical kinetic effects. From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of the Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

A Computer Simulation of the Combustion and Flueway of a Pulse Combustion Water Heater (맥동연소온수기의 연소실과 노도의 컴퓨터 시뮬레이션)

  • Kang, Kun;Shin, Sei-Kun;Kim, Min-Sik
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.64-72
    • /
    • 1989
  • In this study, the computer simulation for the heat transfer in pulse combustion water heater is performed. The attention is focused to the effects of the installation of corebuster in the flue tube on heat transfer. The energy equations are established for both wall and gas side in the combustion chamber, flue way, exhaust chamber and muffler, and the numerical calculation is executed. Zone method takes longer computer calculation time compared with semi-zone method. Semi-zone method is chosen for numerical calculation. As a result of this study, it is found that the installation of the core buster in flue tube increases total heat transfer. It is also found that the total heat transfer is increased with the increasing of the ratio of the cross section area of corebuster to that of the flue tube. However, the heat transfer effect is negligible for the area ratio above 0.5.

  • PDF

Large eddy simulation of turbulent premixed flame with dynamic sub-grid scale G-equation model in turbulent channel flow (Dynamic Sub-grid Scale G-방정식 모델에 의한 평행평판간 난류의 예 혼합 연소에 관한 대 와동 모사)

  • Ko Sang-Cheol;Park Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.849-854
    • /
    • 2005
  • The laminar flame concept in turbulent reacting flow is considered applicable to many practical combustion systems For turbulent premixed combustion under widely used flamelet concept, the flame surface is described as an infinitely thin propagating surface that such a Propagating front can be represented as a level contour of a continuous function G. In this study, for the Purpose of validating the LES of G-equation combustion model. LES of turbulent Premixed combustion with dynamic SGS model of G-equation in turbulent channel flow are carried out A constant density assumption is used. The Predicted flame propagating speed is goof agreement with the DNS result of G. Bruneaux et al.