• Title/Summary/Keyword: Combustion Pressure

Search Result 2,198, Processing Time 0.031 seconds

A Study on Solid Rocket Motor with High L/D Ratio Applied Composite Propellant (Composite 추진제 적용 high L/D ratio 고체추진기관 연구)

  • Kim, Jin-Yong;Lee, Won-Bok;Suh, Hyuk;Rhee, Young-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.555-558
    • /
    • 2010
  • This paper presents a design of solid rocket motor with high length to diameter applied composite propellant. Solid rocket motor with high L/D ratio can be generated erosive burning and combustion instability on longitudinal mode. Especially, Erosive burning can effectively prolong the initial pressure spike in some star grain motors. That is, the study shows design of grain, internal ballistics and structural analysis in order to perform system requirements.

  • PDF

Numerical Study on Correlation between Operating Parameters and Reforming Efficiency for a Methane Autothermal Reformer (천연가스 자열개질기를 위한 작동조건과 개질효율의 상관관계에 대한 수치해석 연구)

  • Park, Joon-Guen;Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.636-644
    • /
    • 2008
  • The objective of this paper is to investigate characteristics of an autothermal reformer at various operating conditions. Numerical method has been used, and simulation model has been developed for the analysis. Pseudo-homogeneous model is incorporated because the reactor is filled with catalysts of a packed-bed type. Dominant chemical reactions are Full Combustion reaction, Steam Reforming(SR) reaction, Water-Gas Shift(WGS) reaction, and Direct Steam Reforming(DSR) reaction. Simulation results are compared with experimental results for code validation. Operating parameters of the autothermal reformer are inlet temperature, Oxygen to Carbon Ratio(OCR), Steam to Carbon Ratio(SCR), and Gas Hourly Space Velocity(GHSV). Temperature at the reactor center, fuel conversion, species at the reformer outlet, and reforming efficiency are shown as simulation results. SR reaction rate is improved by increased inlet temperature. Reforming efficiency and fuel conversion reached the maximum at 0.7 of OCR. SR reaction and WGS reaction are activated as SCR increases. When GHSV is increased, reforming efficiency increases but pressure drop from the increased GHSV may decrease the system efficiency.

A Study on Characteristics of Performance and Emission by CRDI Engine's Injection Strategy (커먼레일 디젤기관에서 분사전략에 따른 성능 및 배출가스에 관한 연구)

  • Eom, Dong-Seop;Ko, Dong-Kyun;Ra, Wan-Yong;Lee, Seang-Wock
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.134-139
    • /
    • 2011
  • Recent research has focused on engine combustion technology as well as application of after-treatment in order to comply with emission regulation. However, it is much more efficient way to control emissions from engine itself and furthermore research on engine control will provide the direction of after-treatment technology in future. Furthermore, emission standard regulation for passenger diesel vehicles has been stringent compared to others and nano-particles will be included in EURO6 regulation in Europe and similar emission standard will be introduced in Korea. A 3.0 liter high speed diesel engine equipped with by CRDI system of 160MPa injection pressure, and an intake/exhaust system of V type 6 cylinder turbo-intercooler was applied. The injection duration and injection quantity, pilot injection types which are related to CRDI and air/fuel ratio control applied by EVGT were changed simultaneously. Standard experiment procedure constituted dilution apparatus and CPC system to collect nano-particles and these test results were compared with regulated materials of CO, HC, NOx and investigated their relations and characteristics of nano-particles.

A Study on the Technique for Dynamic Firing Test of Propulsion System of Personal Surface to Air Missile (휴대용 대공 유도무기 추진시스템의 동적연소시험 기법 연구)

  • 김준엽;한태균;김인식
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.19-28
    • /
    • 2000
  • In general the data such as thrust, pressure, temperature and combustion time are measured in developing the propulsion system of solid rocket motor through static firing test. But in the case of personal surface to air missile there are required a severe safety specifications in order to eliminate gunner hazard from the exhaust plume of motors. The safety requirements lead to the design of separation device and safety igniter device. The dynamic firing test for the designed two devices should be conducted under the flight environmental conditions to verify the requirements compliance. In this study the technique for dynamic firing test of propulsion system of personal surface to air missile is proposed and the method to design the dynamic test bench is also studied.

  • PDF

Study on Discharge Coefficient Variations of Bi-Swirl Injectors with Working Conditions (작동 조건에 따른 이중 와류 분사기 유량 계수 변화 연구)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.177-180
    • /
    • 2010
  • It has been studied the effect of mixture ratio and chamber pressure on variations of discharge coefficients. Combustion experiments of bi-liquid swirl coaxial injectors were conducted at fuel-rich conditions with liquid oxygen and kerosene. Using two types of injectors for the experiments, characteristics of the discharge coefficient have been identified from variations in a diameter of the fuel nozzle and a momentum ratio along with the change of a LOx spray angle. It is concluded that discharge coefficients do not vary because of no change of flame structures from the fact that the fuel swirl chamber is completely filled up with fuel flow.

  • PDF

A Study on the Simultaneous Ignition and Flow Distribution of Hybrid Rocket Clustering Model (하이브리드 로켓 클러스터링 모델의 동시 점화 및 유량 분배 연구)

  • Park, Sunjung;Moon, Keunhwan;Lee, Changwoo;Lee, Yeongseok;Kang, Soyoung;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.781-786
    • /
    • 2017
  • This study aims to acquire a basic clustering technology of hybrid rocket motor for lunar lander, including the oxidizer flow distribution characteristic and the simultaneous ignition characteristic. The experimental setups were established to conduct a series of ground firing test of a clustered motor. The gaseous oxygen (GOX) and the HDPE (High Density PolyEthylene) were used as the oxidizer and the solid fuel, respectively. Experimental results which are the simultaneous pyrotechnic ignition characteristic, the oxidizer distribution characteristic and the pressure traces of each combustion chamber imply that the hybrid rocket clustered motor works successfully.

  • PDF

Optimization of valve events in a 4 cycle reciprocating engine using measured intake and exhaust port pressures (4사이클 왕복동식 엔진에 있어서 흡배기 변동압 측정치를 이용한 흡기효율 최적화 컴퓨터 시뮬레이션)

  • 오세종;진영욱;정재화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.500-507
    • /
    • 1989
  • The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since parameters such as the air resistances in intake and exhaust flow passages, valve lift and valve timing influence greatly to the volumetric efficiency, it is very convenient and time saving if we can optimize these parameters by computation before we enter into long time fact finding engine tests. In this study we have developed a semi-empirical engine simulation program for the determinations of intake and exhaust valve timings, valve lifts, intake and exhaust port diameters in order to obtain highest volumetric efficiency. In this computation it requires only the measured variational pressures in intake and exhaust port. Using these variational pressures as an input data for our simulation program, we can calculate volumetric efficiency more accurately and can save computing time drastically. To confirm the validity of our simulation program we have made engine operation test in parallel and taken the experimental data. Comparing the computation result with the experimental data obtained through real engine test it has shown only the difference of 3%.

FINITE ELEMENT MODELING AND PARAMETER STUDY OF HALF-BEAD OF MLS CYLINDER HEAD GASKET

  • CHO S. S.;HAN B. K.;LEE J. H.;CHANG H.;KIM B. K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.109-114
    • /
    • 2006
  • Half-beads of multi-layer-steel cylinder head gaskets take charge of sealing of lubrication oil and coolant between the cylinder head and the block. Since the head lifts off periodically due to the combustion gas pressure, both the dynamic sealing performance and the fatigue durability are essential for the gasket. A finite element model of the halfbead has been developed and verified with experimental data. The half-bead forming process was included in the model to consider the residual stress effects. The model is employed to assess the dependence of the sealing performance and the fatigue durability on the design parameters of half-bead such as the width and height of bead and the flat region length. The assessment results show that the sealing performance can be enhanced without significant deterioration of the fatigue durability in a certain range of the half-bead width. In the other cases the improvement of sealing performance is accompanied by the loss of the fatigue durability. Among three parameters, the bead width has the strongest influence.

Stability limits of premixed microflames at elevated temperatures (고온에서의 예혼합 초소형 화염의 연소안정한계 연구)

  • Kim, Ki-Baek;Lee, Kyoung-Ho;Hong, Young-Taek;Kwon, Oh-Chae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.158-165
    • /
    • 2006
  • In order to provide the database for designing microcombustors, the combustion characteristics of premixed methane and propane air microflames at normal and elevated temperatures and atmospheric pressure generated on a microtube were studied experimentally and computationally. The stability limits of premixed microflames and the propensity of the microflames near the stability limits were experimentally determined, while the structure of the microflame at the fuel-leanest limit was obtained using a two-dimensional CFD simulation with a reduced kinetic mechanism. For all the microflames, the stability limits were observed only in the fuel-rich region. Results also show substantial extension of stability limits with elevated temperature that is realistic condition for micro fuel processing and significant fuel dilution immediately near the tube exit due to a low Peclet number times Lewis number effect.

A Study on Performance Characteristics of Ti-Zr Type Metal Hydrides and Hydrogen Storage Cylinders with the Hydrides (Ti-Zr계 금속수소화물 및 수소저장실린더의 성능특성 연구)

  • Kim, Ki-Youl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.519-526
    • /
    • 2012
  • Recently fuel cell is considered to be a new technology that can substitute the ICE(Internal Combustion Engine) as well as overcome environmental issues. In military applications, fuel cell has an unique advantages, which are quietness, namely, stealth. The environmental requirement such as shock and vibration in military application, however, is very severe comparing to civilian demand. Especially, the safety concerning hydrogen storage is the most important problem. Among the candidate methods to store hydrogen, the metal hydride storage is promising method owing to the storage mechanism of chemical absorption of hydrogen to metal hydrides. In this study, the new composition of Ti-Zr type metal hydride(A composition) was suggested and investigated to increase the hydrogen storage capacity. For comparison, the hydrogen charge-discharge properties were investigated with the commercialized Ti-Zr type metal hydride(B composition) using PCT(Pressure-Composition-Temperature) measurement. Also two hydrogen storage cylinders were loaded with each metal hydride and their hydrogen charging and discharging characteristics were investigated. As a result, it was found that the new Ti-Zr type metal hydride has a slightly higher hydrogen storage capacity compared to commercial Ti-Zr type metal hydride.