• 제목/요약/키워드: Combustion Phenomena

검색결과 353건 처리시간 0.023초

모델 섹터 연소기의 점화기 깊이에 따른 점화특성 연구 (Study on Ignition Characteristics Relating to Igniter Penetration Depth in a Model Sector Combustor)

  • 진유인;유경원;민성기;김홍집
    • 한국연소학회지
    • /
    • 제22권2호
    • /
    • pp.36-41
    • /
    • 2017
  • Aero gas turbine engines must demonstrate their ability to be ignited on ground conditions or relighted in flight. The electric spark ignition is usually used in current aero gas turbine engines. Experiments on ignition characteristics relating to spark igniter penetration depth under atmospheric pressure and temperature conditions were conducted on the model combustor which is scaled in 1/18. Exciter was operated during 2 seconds, and successful ignition phenomena were confirmed by the pressure rising sharply in combustor. In addition, instantaneous ignition images were captured by a high-speed camera. It showed kernel propagation and successful ignition events in the sector model combustor. Ignition test results showed that ignition limit with increase in penetration depth of the igniter plug was wider. When the penetration depth of the igniter plug increased under the same fuel injection pressure condition, successful ignition events were obtained in higher differential pressure conditions between inlet and outlet of the combustor. The results demonstrate that the ratio of the combustible mixture, which is exposed to the high temperature environment around the igniter plug tip, increases. Thereby affect the combustor ignition performance.

KSR-III 엔진 축소형 모델 연소 특성(I) (The Combustion Characteristics of a Subscale Engine of KSRIII(I))

  • 김영한;김용욱;고영성;이수용;류철성;설우석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.846-851
    • /
    • 2001
  • For the successful development of the main engine of KSR(Korea Sounding Rocket)-III, Korea Aerospace Research Institute(KARI) carried out the experimental study on the subscale model engines. Several types of engines were tested on the Small Liquid Rocket Engine Test Facility. One of the typical test results of a Sub. engine(Sub. Mod.3) is presented here. It uses the Jet A-1 as fuel, liquid oxygen as oxidizer, and Tri-Ethyl Aluminium(TEA1) as ignition agent. The gas pressure feed system is adopted as a feeding mechanism and the design chamber pressure is 200psia. The physical phenomena are described in three regimes(ignition, transient, and steady state) with the pressure, thrust, flowrate and image data. And the pressure oscillation is analyzed in Fourier domain (<500Hz). Then we conclude that in this experiment, the engine shows the characteristic low frequency of 80Hz and it is stable for that frequency of pressure oscillation.

  • PDF

액체로켓엔진을 이용한 Graphite 노즐의 삭마 거동 연구 (A Study on Ablation Behavior of Graphite Nozzle using Liquid Rocket Engine)

  • 조남춘;박희호;금영탁
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.119-122
    • /
    • 2005
  • 고온과 고속의 열악한 환경 속에서 발생하는 비행체의 삭마현상은 일반적으로 상변화를 수반하는 유체의 유동, 에너지 전달, 질량전달, 화학반응이 수반되기 때문에 해석과정이 복잡하다. 본 연구에서는 액체로켓엔진의 흑연노즐에 대하여 1차원적으로 삭마현상을 수치해석하고, 실험을 통하여 이를 비교 검토하였다. 낮은 연소압력과 산화제/연료비에서는 삭마가 거의 이루어지지 않았으며, 연소압력과 혼합비가 낮은 경우에는 해석결과의 신뢰도는 낮고 정상작동 구간에서의 해석결과와 실험결과가 차이가 많은 것으로 보아 화학적 삭마 외에 기계적 삭마도 상당하다.

  • PDF

사행정기관의 압축행정시의 가스유동에 관한 연구 (A Study On The Gas-Flow In the Four-Stroke Engine At Compression Stroke)

  • 이기명
    • 한국농공학회지
    • /
    • 제17권4호
    • /
    • pp.3970-3979
    • /
    • 1975
  • On account of the development of the high speed internal combustion engines, several methods for increasing burning velocity has been investigated lately. Installation of a squash area on a cylinder head is one of the simple and practical method to induce the strong tubulant flow of air-fuel mixtureinto a combustion chamber. In this study, a four-stroke engine used for agricultural purpose was tested as an experimental model. A mathematical model of the squash velocity was derived, and also, several characteristics of the squash phenomena during the motoring of the engine used as a modelwere investigated. The results obtained were as follows: (1) Mathematical model of squash velocity was established and cheked (2) Squaash velocity and engine speed were found to be proportional to the squash area while they were inversely proportional to the squash width. (3) Squash velocity and crank angle at which the squash velocity become its peak were influenced by the magnitude of squash clearance: increase of squash clearance made squash velocity reduced acd made the peak of the squash velocity for from the top dead center and (4) When the squash area is divided in small areas baving unit width along the squash section, squash velocity at each unit width was proportional to the magnitude of the squash distance covered by the unit width.

  • PDF

실용 연소장 해석을 위한 대 와동 모사 (Large Eddy Simulation for the Analysis of Practical Combustion Field)

  • 황철홍;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.181-188
    • /
    • 2005
  • Large eddy simulation(LES) methodology used to model the isothermal swirling flows in a dump combustor and the turbulent premixed flame in a model gas turbine combustor. The LES solver was implemented on parallel computer consisting 16 processors. In isothermal flow simulation, the results was compared with that of ${\kappa}-{\varepsilon}$ model as well as experimental data, in order to verify the capability of LES code. To model the turbulent premixed flame in a gas turbine, the G-equation flamelet model was used. The results showd that LES and RANS well predicted the mean velocity field of a non-swirling flow. However, in swirling flow, LES showed a better performance in predicting the mean axial and azimuthal velocities, and the central recirculation zone than those of RANS. In a model gas turbine combustor, the operation condition of high pressure and temperature induced the different phenomena, such as flame length and flow-field information, comparing with the condition of ambient pressure and temperature. Finally, it was identified that the flame and heat release oscillations are related to the vortex shedding generated by swirl flow and pressure wave propagation.

  • PDF

연료 종류 및 당량비에 따른 Flame Spray 화염장의 열-유동 특성 연구 (Thermal and Flow Characteristics of Fluid with Fuel Type and Equivalence Ratio in Flame Spray Process)

  • 이재빈;김대윤;신동환;이성혁
    • 한국분무공학회지
    • /
    • 제18권4호
    • /
    • pp.202-208
    • /
    • 2013
  • The present study aims to investigate the flow characteristics with respect to fuel type and equivalence ratio in the flame spray coating process. The flame spray flow is characterized by much complex phenomena including combustion, turbulent flows, and combined heat transfer. The present study numerically simulated the flam spray process and examined the gas dynamics involving combustion, gas temperature and velocity distributions in flame spray process by using commercial computational fluid dynamics (CFD) code of FLUENT (ver. 13.0). In particular, we studied the effect of fuel type and equivalence ratio on thermal and flow characteristics which could substantially affect the coating performance. From the results, it was found that the gas temperature distributions were varied with different fuels because of reaction times were different according to the fuel type. The equivalence ratio also could change the spatial flame distribution and the characteristics of coated layer on the substrate.

스파크 점화 엔진에서 희박연소의 전자제어 히스테리시스 현상에 관한 실험적 연구 (A Experimental Study on the Electronic Control Hysteresis Phenomenon of Lean Burn in Spark Ignition Engine)

  • 김응채;김판호;서병준;김치원;이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.475-481
    • /
    • 2004
  • Recently it is strongly required on lower fuel consumption. lower exhaust emission, higher engine performance. and social demands in a spark ignition gasoline engine. In this study. the experimental engine used at test. it has been modified the lean burn gasoline engine. and used the programmable engine management system, and connected the controller circuit which is designed for the engine control. At the parametric study of the engine experiment, it has been controlled with fuel injection, ignition timing. swirl mode, equivalence ratio engine dynamometer load and speed as the important factors governing the engine performance adaptively. It has been found the combustion characteristics to overcome the hysteresis phenomena between normal and lean air-fuel mixing ranges. by mean of the look-up table set up the mapping values. at the optimum conditions during the engine operation. As the result, it is found that the strength of the swirl flow with the variation of engine speed and load is effective on combustion characteristics to reduce the bandwidth of the hysteresis regions. The results show that mass fraction burned and heat release rate pattern with crank angle are reduced much rather, and brake specific fuel consumption is also reduced simultaneously.

흡입포트형상에 따른 모터링엔진내 압축과정 난류특성 연구 (The Effect of Intake Port Configurations on the Turbulence Characteristics During Compression Stroke in a Motored Engine)

  • 강건용;이진욱;정석용;백제현
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.920-932
    • /
    • 1994
  • The combustion phenomena of a reciprocating engine is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of their relationship is not well known. This paper describes cycle resolved LDV measurement of turbulent flow inside the cylinder of a 4-valve engine under motoring(non-firing) conditions, and studies the effect of intake port configurations on the turbulence characteristics using following parameters ; Eulerian temporal autocorrelation coefficient, turbulence energy spectral density function, Taylor micro time scale, integral time scale, and integral length scale.

상세 및 축소 반응 메커니즘을 이용한 희석된 수소-공기 확산화염의 소염과 음향파 응답 특성에 관한 수치해석 (Numerical study on extinction and acoustic response of diluted hydrogen-air diffusion flames with detailed and reduced chemistry)

  • 손채훈;정석호
    • 대한기계학회논문집B
    • /
    • 제21권11호
    • /
    • pp.1527-1537
    • /
    • 1997
  • Extinction characteristics and acoustic response of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flamelet in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such nonmonotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. The investigation of acoustic-pressure response in each regime, for better understanding of combustion instability, shows different characteristics depending on pressure. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted since flame temperature and chain branching reaction rate decreases as pressure rises. This acoustic response can be predicted properly only with detailed chemistry or proper reduced chemistry.

불의 애니메이션을 위한 복합적 기법 (A Hybrid Technique for Fire Animation)

  • 민경하
    • 한국게임학회 논문지
    • /
    • 제7권3호
    • /
    • pp.77-88
    • /
    • 2007
  • 본 논문에서는 불을 애니메이션하고 가시화하는 새로운 방법을 제시한다. 불을 애니메이션하기 위해서 해결해야 하는 문제들 중에서 가장 어려운 문제는 불이 빛과 열을 주위로 방사하는 과정을 시뮬레이션하는 것이다. 이 방법을 해결하기 위해서 연료가 빛과 열을 발산하고 연소물이 되는 연소 과정을 유체 방정식이 구현되는 복셀화된 공간에서 시뮬레이션하는 복합적인 방법을 제안한다. 불의 움직임은 다른 유체의 경우와 같이 유체 방정식을 이용해서 시뮬레이션하며, 시뮬레이션의 각 단계마다 연소 과정에서 발생한 열이 유체의 온도를 높이고, 이렇게 높아진 온도가 불의 복잡한 움직임을 더욱 가중시키는 과정을 반복시키면서 불에 대한 애니메이션이 처리된다. 또한, 불과 불이 주변을 밝히는 효과를 처리하기 위해서 널리 알려진 포톤 매핑 알고리즘의 효율성을 개선한 새로운 가시화 알고리즘을 구현한다.

  • PDF